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Abstract: Multivariate Statistical Process Control tools have been developed for
monitoring and fault detection on a Lam 9600 Metal Etcher. Application of these
methods is complicated because the process data exhibits large amounts of normal
variation that is continuous on some time scales and discontinuous on others.
Variations due to faults can be minor in comparison. Several models based on principal
components analysis and variants which incorporate methods for model updating have
been tested for long term robustness and sensitivity to known faults. Model
performance was assessed with about six month’s worth of process data and a set of
benchmark fault detection problems.
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1. INTRODUCTION

Semiconductor processes, like many chemical
processes, are becoming increasingly measurement
rich. Large volumes of data are recorded and are often
not used until the process has undergone a significant
upset. This data can be very useful for process
monitoring if the appropriate tools are applied.
Successful applications can result in reduced costs
and/or improve the final product quality through
improved process control or fault detection. However,
there are significant obstacles to using the data for
process monitoring and fault detection, including the
sheer volume of the data, large numbers of variables,
and the non-stationarity of the process data due to
process and monitoring sensor drift. A wide variety of
data treatment methods are available, however, it is
often not apparent what methods will be useful in
meeting monitoring and fault detection goals.

Several chemometrics techniques are available for
application to process data (Wise, et. al., 1996). These
applications can be roughly divided between those
directed at maintenance of process instruments, e.g.
calibration, and those concerned with maintenance of
the process itself, e.g. statistical process control and
fault detection. The focus of this paper is on the latter
application in which we describe a study performed
on a Lam 9600 metal etch tool at Texas Instruments.
For this study principal components analysis (PCA)
modeling methods, which are commonly used for
multivariate statistical process control (MSPC), were
modified to be robust over long time periods in the
presence of process drift while remaining sensitive to
faults. PCA will be briefly reviewed, along with more
recent modifications which allow the PCA models to
adapt with the process. The issue of sensitivity of
different process sensors and methods for detecting
process faults is discussed in a companion article
(Wise, et. al., 1997).



2. THE METAL ETCH PROCESS

There are several steps in the manufacture of
semiconductors. This project focused on an Al-stack
etch process performed on the commercially available
Lam 9600 plasma etch tool. The goal of this process is
to etch the TiN/Al - 0.5% Cu/TiN/oxide stack with an
inductively coupled BCl3/Cl2 plasma. The key
parameters of interest are the etch Al line width
reduction relative to the incoming resist line width,
etch uniformity across the wafer, and loss of the
underlying oxide due to over etch.

The standard recipe for the process consists of a series
of six steps. The first two are for gas flow and
pressure stabilization. Step 3 is a brief plasma ignition
step. Step 4 is the main etch of the Al layer
terminating at the Al endpoint, with Step 5 acting as
the over-etch for the underlying TiN and oxide layers.
Note that this is a single chemistry etch process, i.e.
the process chemistry is identical during steps 3
through 5. Step 6 vents the chamber. The process
"profile" is shown in Figure 1, which is the etch tool
Endpoint A signal (the plasma emission intensity as
measured by a filter spectrometer). The stabilization
step is followed by the three etch regions: Al, TiN and
oxide etch. Etching of an individual wafer is
analogous to a single batch in a chemical process.
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3. PROCESS SENSORS

Sensor selection is a primary consideration when
planning a process monitoring and fault detection
system. In the etch process, it would be ideal to have
sensors which directly reflected the state of the wafers
being etched. However, with a few exceptions, wafer
state sensors are typically unavailable in original
equipment manufacturer etch tools. Thus, the
alternative is to select more commonly available
process state sensors, with the understanding that
wafer state information will have to be inferred.

The research metal etcher used for this study was
equipped with multiple sensor systems however, long
term data was only available for the machine state

sensors. Therefore this paper focusses on testing long
term model robustness and sensitiviity using data
from the machine state sensors only. These sensors,
built into the processing tool, collect the available
machine data during wafer processing. This data
consists of 40 process setpoints, measured and
controlled variables sampled at 1 second intervals
during the etch. These are engineering variables, such
as gas flow rates, chamber pressure and RF power. In
this work, non-setpoint process variables that exhibit
some normal variation were used for monitoring, as
shown in Table 1. The physics of the problem also
suggests that these variables should be relevant to
process and final product state.

    Table 1. Machine Variables for Process Monitoring

1 BCl3 Flow 11 RF Power

2 Cl2 Flow 12 RF Impedance
3 RF Bottom Power 13 TCP Tuner
4 RFB Reflected Power14 TCP Phase Error
5 Endpoint A Detector 15 TCP Impedance
6 Helium Pressure 16 TCP Top Power
7 Chamber Pressure 17 TCP Reflected Power
8 RF Tuner 18 TCP Load
9 RF Load 19 Vat Valve

10 Phase Error

4. PROCESS SHIFTS AND DRIFT

A major objective of this work was to determine if
process monitoring models could be constructed using
the machine state sensors. A key requirement for these
models was that they remain robust over the long term
i.e. did not require frequent recalibration due to
excessive false alarms. These models must also
remain sensitive to faults. Under ideal conditions a
process would be stationary, i.e. retain the same mean
and covariance structure over time. However,
measurements from the etch process are clearly non-
stationary. The etch process data exhibits large
amounts of normal systematic variation on several
time scales. This normal process drift is continuous on
some time scales and discontinuous on others while
variations due to faults can be relatively minor in
comparison.

Normal process variation is primarily due to three
sources. The first is a result of periodic cleaning and
maintenance about every 1 to 2 months. After
cleaning the goal is to restore the machine to its
original state but this is rarely achieved, so
consecutive clean cycles have different initial states
i.e. large discontinuous shifts in the process mean.
The second source of large variation is due to a
continuous drift in the process data over a clean cycle
as residue accumulates on the inside of the chamber
and as the machine state sensors drift. The third major
source of variation in the process data is a result of
discontinuous shifts in the process mean on a lot–to–
lot basis. Dozens of lots (there are approximately 24
wafers per lot process one at a time) are processed
during a clean cycle and variation in the lots is
primarily due to differences in incoming wafers

Fig. 1. Endpoint Signal For Typical Etch Profile.



resulting from changes in upstream processing. In
addition, process maintenance can result in sudden
shifts in the process mean. Variation is also observed,
although to a lessor extent, as a lot is processed. The
result is that it is normal for the process data to show
considerable variation over time, as illustrated in
Figure 2. This variation is often much larger than
changes due to process faults. It has also been
observed that the process mean shows more erratic
behavior than the process covariance, i.e how the
process variables co-vary .

5. DATA TREATMENT

Processes in the semi-conductor industry are being
monitored by a large number of sensors producing
enormous volumes of data. Often essential
information lies not in any individual process variable
but in how the variables change with respect to one
another, i.e. how they co-vary. In these cases the
sensor measurements are redundant and
complimentary but many modeling techniques applied
to data processing do not take advantage of this fact,
and as a result, a great deal of data is wasted i.e. little
useful information is obtained from it. The question is
how to extract information and compress the data
down to a few useful metrics. Also, in the presence of
noise, it would be desirable to take advantage of some
signal averaging between the redundant
measurements. Principal components analysis (PCA)
has many of these desired properties and is a common
tool for multivariate statistical process control
(MSPC) (Jackson, 1991; Jackson, et. al., 1979;
Kourti, et. al., 1995; Kresta, et. al., 1991; MacGregor,
J.F., 1994; Wise, et. al., 1988, 1990 and 1995a). This
work used PCA and variants of PCA for developing
MSPC tools for the semi-conductor etch process.

5.1 Principal Components Analysis

Only a brief overview of PCA is given here. For more
detail the reader is referred to Jackson (1991), Wise,
et. al. (1995b and 1996), and Wold, et. al. (1987). The
goal of PCA is to split a data matrix X  into two
portions: one that describes the systematic variation
(the process model) and the other that captures
measurement noise (residual variance). Of course the
split is never quite perfect but this typically does not
present a problem for process monitoring.

For a data matrix X that is m rows by n columns
(samples by variables) the PCA model is given by
Equation 1.

 X = t1pT
1+t2pT

2+...+tkpT
k + E = Tk PT

k + E (1)

Here X has been mean centered by a 1 by n vector of
means a i.e. adjusted to have a zero mean by
subtracting the mean from each column. It may also
have been autoscaled by a 1 by n vector of standard
deviations d i.e. adjusted to zero mean and unit
variance by dividing each column by its standard
deviation. In PCA the data matrix X  is decomposed
into the sum of k outer products of vectors ti and pi

(the process model) plus a residual matrix E. The p i
(loadings vectors) are the eigenvectors of the
covariance matrix of X  (correlation matrix if
autoscaled) and provide an orthonormal set of vectors
(pi

Tpj  = 0 for i ≠ j, p i
Tpj  = 1 for i =j) that describe

directions of systematic variation in X. The scores, ti,
form an orthogonal set of vectors (ti

Ttj = 0 for i ≠j)
and are coordinates of the samples in the new
coordinate system defined by the pi . The number of
principal components (PCs) retained to model the
systematic variation k must be less than or equal to the
smaller dimension of X, i.e. k ≤ min{m,n}. Generally
it is found that the data can be adequately described
using far fewer PCs than original variables. Note that
for X and any ti, pi  pair

Xp i  = ti (2)

This provides the basis for projecting new data into a
PCA model, calculating new scores, and comparing to
existing control limits.

Two statistics that are commonly employed in MSPC
are a lack of model fit statistic, Q, and a measure of
the variation within the PCA model given by
Hotelling’s T2 statistic. For each sample Q is the sum
of squares of each row (sample) of E, for example, for

the ith sample in X, xi :

Qi = eiei
T = xi (I  - PkPk

T)xi
T (3)

where ei is the ith row of E. The columns of Pk are the
first k loadings vectors retained in the PCA model and
I  is the identity matrix of appropriate size (n by n).
The Q statistic indicates how well each sample
conforms to the PCA model and is a measure of the
amount of variation not captured by the model. T2 is
the sum of normalized squared scores defined as

Ti
2 = ti(ΤT

kΤk)-1ti
T (4)

in this case t i refers to the ith row of Tk, the matrix of
k scores vectors and the term in parentheses is a
diagonal matrix of eigenvalues of the covariance
matrix of X . Statistical limits can be developed for
sample scores, Q and T2, and individual residuals.

Time

Process Mean Process Covariance

Fig. 2. Schematic Diagram Showing Drifting Process
Covariance and Shifting Mean.



5.2 Applying an Existing PCA Model:MSPC

A PCA model is developed on a calibration data set
and consists of a mean vector, standard deviation
vector (or other scaling vector if applied),
eigenvalues, loadings, and statistical limits on the
scores, Q and T2. The model can be used with new
process data Xnew to detect changes in the system.
The first step is to scale the new process data to the
mean a and standard deviation d of the calibration
data set. New scores ti,new can be obtained using
Equation 2 with original loadings vectors, pi , and Q
and T2 for the new data can be obtained with
Equations 3 and 4 by substituting xi,new for x i  and
ti,new for ti. When one monitors these values as the
process proceeds, the result is multivariate statistical
process control (MSPC). For PCA based monitoring
models of the etch process it was found that the Q and
T2 statistics were adequate for detecting system faults.

5.3 Application of PCA with a MovingMean

PCA as described above works well with stationary
processes. However, for cases where the mean drifts
but the covariance structure does not change other
strategies can be applied. For infrequent discontinuous
shifts in the mean (such as that observed between
clean cycles for the etch process) the strategy may be
as simple as resetting the mean used to scale new
process data to that observed at the beginning of a
new cycle. This estimate of the process cycle mean
can also be continuously updated as new data are
acquired. For frequent shifts in the process mean data
from each batch (each wafer processed) can be
centered to the process mean for that batch. This latter
strategy puts all the monitoring responsibility on the
covariance structure alone and removes information
related to shifts in the process mean. This could result
in a significant loss of sensitivity of the monitoring
model. Of course a model of the process means, either
alone or in conjunction with a model of the batch
covariance, can prove very useful.

For process data with a continuously drifting mean
(such as that observed over a clean cycle for the etch
process) new process data could be centered to the
mean of the past J batches or moving window
average. Selecting a good value for J is difficult but
analysis suggests that the number of batches
corresponding to the time scale of the process drift is
reasonable. Another strategy borrowed from time
series analysis uses an exponentially weighted moving
average (EWMA) (Box, et. al., 1994). Equation 5
shows how the moving average a′ is updated:

a′i+1 = αai + (1-α)a′i (5)

where α (0 ≤ α ≤ 1) is the weighting. Data from batch
i+1 is then centered to the moving average a′i+1
which only depends on past values of a′. The problem
here is determining a good value for α . In all cases

discussed above the centering strategy should be
applied to the calibration data set as well as new data.

5.4 Application of PCA with a Moving Covariance

If process drift includes a varying covariance structure
the PCA models can be allowed to adapt (Wold,
1993). A moving window PCA can be used when the
process data provides a single sample per batch. This
is the case when only the batch mean is used, data is
pre-processed using speech recognition technology
(White, et. al., 1997), or multi-way PCA is used
(Wise, et. al., 1996 and 1997). Moving window PCA
is analogous to centering to a moving window mean
and just uses a PCA model of the past J batches. The
problem again is identifying a good value for J.

When all the data from a batch is available an
exponentially weighted moving covariance (EWMC)
can be used. Equation 6 shows how the moving
covariance C′ is updated:

C′i+1 = βCi + (1-β)C′i (6)

where β (0 ≤ β ≤ 1) is the weighting. Data from batch
i+1 is then compared to a PCA model based on the
moving covariance C′ i+1 which only depends on past
values of C′. The problem again is determining a good
value for β.

6. TESTS WITH LONG TERM DATA

A significant accomplishment of this project was the
acquisition of long term data. Analysis of this data
showed that testing models on just a few lots worth of
data is highly unrealistic and will likely give
optimistic results for methods not expected to remain
robust over the long term. The long term data includes
significant variation due to a variety of causes and
provides a realistic test of each method considered.

Each monitoring model tested was calibrated on data
acquired on the Lam 9600 metal etcher from
11/27/95–1/12/96 including data from about 250
wafers. During this period the etch tool was subjected
to preventative maintenance (PM) and an additional
cleaning (MC). Once calibrated the models were not
recalibrated during testing. Test data for about 700
wafers was acquired from 1/22–4/26/96 which
included three PMs, a MC, and two new equipment
installations (EQ). The test data also included data
from 5 experiments (EXP-29 through 33) that spanned
a PM, a MC and an EQ.

Sensitivity of the process monitoring models was
tested using etch data from three experiments (EXP-
29, 31 and 33) that included induced faults. A series
of specific faults were intentionally induced by
changing the TCP power, RF power, pressure, Cl2 or

BCl3 flow rate, and He pressure. These three
experiments consisted of a total of 129 wafers with 21
faults. To make the test more representative of an
actual sensor failure, the analysis was done with



“reset” values: values for the controlled variable
which was intentionally moved off its setpoint was
reset to have the same mean as its normal baseline
value, i.e. the controlled variable which was changed
was reset to look normal in the data file. Designed
experiments (EXP-30 and 32) were also performed
and since these experiments used setpoints far from
normal operation they can be considered multi-
variable faults. Sensitivity is discussed more fully in
the companion article (Wise, et. al., 1997).

7. RESULTS AND DISCUSSION

PCA models of the long term data that did not allow
for an adapting mean or covariance were not robust to
PMs, MCs or EQs. These activities resulted in a large
shift in the process mean and in some cases the Q
residuals for the test data exceeded the 95%
confidence limit by 1–8 orders of magnitude. As a
result all subsequent models reset the process mean
after a PM, MC or EQ.

A model was also tested for wafer data centered to the
process mean for that wafer. This centering strategy
showed great improvement with Q residuals for the
test data of the same order of magnitude as the 95%
sample confidence limit. However, the model
indicated faults for nearly all wafers after about 100
wafers were processed (after a PM and the first EQ).
The result is that this model was too sensitive to
changes in covariance structure and does not have a
high longevity.

Three PCA models with an EWMA and weights α of
0.1, 0.5 and 0.9 were also tested. This strategy again
showed a vast improvement in robustness compared
to PCA with the assumption of a stationary process.
However, all three models consistently showed false
alarms after about 250 wafers were process. The
models remained robust through a PM, an EQ, EXP-
29, and EXP-30, and subsequently failed after a MC.
All three models caught the induced faults in EXP-29
but also included false alarms: 2 for α  = 0.1, and 4
each for α = 0.5 and 0.9.

Three PCA models which combined an EWMA and
EWMC were tested. These models used EWMA
weights α of 0.1, 0.5 and 0.9 and an EWMC weight β
of 0.1 which allowed the covariance to adapt slowly.
These models remained robust through the entire test
period and caught 8 (mostly power and pressuure
faults) of the 21 induced faults (all 21 faults were
identified when fault measurements were not replaced
by their nominal value).

PCA models are typically very easy to interpret and
when interogated can provide fault diagnosis. This
study started with a simple PCA modeling strategy
and added complexity only as it was deemed
necessary. The most robust model tested used PCA
combined with both an EWMA and EWMC. This
strategy also proved sensitive, but at least three issues
need to be addressed due to the added complexity.
The first issue is the development of rules for when

the moving mean is reset (in this study it was reset
after each PM, MC and EQ). Secondly, strategies for
identifying optimal weighting parameters for the
EWMA and EWMC need to be developed. No
attempt was made to optimize these parameters in this
study but there did not appear to be a strong
sensitivity in model performance with respect to the
EWMA weight. A third issue that must be addressed
is the development of rules for model updating. In this
study the models were updated with data from a wafer
if it was not considered an excessive fault i.e. its Q
and T2 statistics were less than 1.1 times their
respective 95% limit.

8. CONCLUSIONS

The success of developing the monitoring strategy
depended on the availability of long term data. The
etch process is non-stationary and contains large
amounts of normal variance. Testing monitoring
models with only a few lots of data can lead to
optimistic and erroneous conclusions about model
performance and robustness.

This study showed how one can systematically step
through options for developing a robust process
monitoring model. In this case complexity was added
only as deemed necessary. The most robust models
tested used a principal components analysis based
model combined with an exponentially weighted
moving average and covariance.

Remaining issues include the development of rules for
resetting a moving mean. This study reset the moving
when when large shifts occurred as a result of
maintenence, cleaning and equipment changes.
Methods also need to be developed for selecting
optimal weightings for the moving avarage and
covariance. Rules for model updating also need to be
developed to avoid updating a moving avarage and
covariance with data from a faulty process.
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