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Abstract: Multivariate calibration, classification and fault detection models are ubiquitous in QbD 
(Quality by Design) and PAC and PAT (Process Analytical Chemistry and Technology, respectively) 
applications. They occur in the both the development of processes and their permissible operating limits, 
(i.e. models for relating the process design space to product quality), and in manufacturing (i.e. models 
used in monitoring and control). Model maintenance is the ongoing servicing of these multivariate 
models in order to preserve their predictive abilities. It is required because of changes to either the 
sample matrices or the instrument or response. The goal of model maintenance is to sustain or improve 
models over time and changing conditions with the least amount of cost and effort. This paper presents a 
roadmap for determining when model maintenance is required, the probable source of the response 
variations, and the appropriate approaches for achieving it. Methods for evaluating model robustness in 
order to identify models with lower ongoing maintenance costs are also discussed. 
. 
Keywords: Multivariate Calibration, Regression Modeling, Model Updating. 

 

1. INTRODUCTION 

Model maintenance can be roughly defined as the ongoing 
upkeep of (primarily) multivariate calibration and fault 
detection models in order to maintain their predictive 
abilities. The goal of model maintenance is to preserve or 
improve models over time and changing conditions with the 
least amount of cost and effort. This document outlines the 
reasons model maintenance is required and some approaches 
for dealing with it. It is written primarily from the perspective 
of spectroscopic instruments but much of it is applicable to 
soft sensor models in the process environment. 

1.1 Why is Model Updating Necessary? 

The reasons that calibration models need updating can be 
divided into two cases. The first is when the calibration set 
simply needs to be expanded. In this case, nothing has really 
changed with the response of the instrument to specific 
analytes. But the addition of new analytes or other previously 
unseen variations (such as changes in particle size 
distribution or the drift of a chemical process to a new steady 
state) make the old models biased. In these cases the 
calibration space must be expanded. In order for multivariate 
models to ignore irrelevant variation, they must have samples 
exhibiting this variation in the calibration data. Thus, when 
new variations are added, new samples must be added which 
exhibit the variation. 

The second case is when the samples are the same but the 
measurement system response function has changed. This is 
often due to changes in the measurement hardware (new light 
source, clouding of optics, wavelength registration shift). 
This is really the instrument standardization problem. 
Changes in measurement conditions (temperature, pH, 

pressure) and changes in the sample matrix can have similar 
effects though they aren’t actually changes in the hardware. 

2. DETERMINING WHEN MODELS NEED UPDATING 

Simply put, models need updating when their performance 
degrades. However, it is not always a simple matter to 
determine when that has occurred. Methods for identifying 
model degradation can be divided into those that rely on 
external validation samples and those that rely on internal 
model diagnostics. 

2.1  External Validation Samples 

The most obvious way to determine when a model is not 
predicting well is of course by checking the sample property 
predictions versus the reference method. Various SPC rules 
can be used on the deviations between the values predicted 
by the model and the reference values (such as the Western 
Electric rules). Procedures for doing confirmatory reference 
measurements are industry and applications specific and there 
is no “one size fits all” strategy. In many industries, 
especially pharmaceutical, a risk-based approach is preferred 
where limits are established based on potential system faults.  

2.2  Model Diagnostic Measures (Q, T2, etc.) 

In the absence of external validation samples, or in between 
available validation samples, it is possible to use the 
multivariate model diagnostics. Though these go by 
somewhat different forms and names, they generally consist 
of some sort of model residual (that measures the orthogonal 
difference between a sample and the modelled data) and a 
leverage (that measures how far a sample is from the center 
of the data set, typically in some weighted fashion to account 
for some directions being more common than others). We 
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prefer the residual measure known as Q and Hotellings T2 for 
leverage (Jackson 1991). 

It is convenient to partition “uniqueness” between these two 
measures as they have different complementary 
interpretations. High T2 samples have the same directions of 
variation as the calibration samples but are more extreme, 
while high residual samples exhibit new variations. In 
spectroscopic applications, high T2 samples tend to be made 
up of the same analytes as the calibration data, but at extreme 
concentrations or unusual combinations of concentrations. 
Samples with high Q values have new analytes that make the 
samples unique, or other new variations (changes in the 
instrument or measurement conditions, etc.).  

As with external validation, SPC rules can be used to monitor 
Q and T2 values for each sample and detect when they are 
trending towards unacceptable values. 

2.3  Setting Action Limits on Model Performance 

While model prediction performance and internal diagnostics 
can be monitored, a key question is “At what point should 
action be taken?” With regard to agreement of predictions 
with external validation samples, answering this is fairly 
straightforward:  choose the degree of deviation that pushes 
the instrument beyond the accuracy that is required for the 
application.  Implicit in this assessment of the degree of 
deviation is the time frame over which the performance is 
monitored; simply put, we must avoid taking action based 
upon a statistically insufficient number of observations. 

Setting limits on model internal diagnostic measures is 
somewhat more problematic. Just because new samples are 
producing high Q and T2 values doesn’t guarantee that the 
predictions are bad, it simply indicates that they are not to be 
trusted. Consistently high Q or T2 values indicate that the 
current data does not fall within the range of the calibration 
data and certainly the prediction should be checked against 
the primary reference method. At this point, adjusting the 
model should be considered. 

Our experience is that model predictions suffer less on 
samples with high T2 values than high Q values (relative to 
their 95% or 99% limit based on the calibration data). This 
makes sense if the response of the measurement system is 
linear with respect to the property of interest (e.g. analyte 
concentration) and primary interferences. In these cases it 
would be expected that the model should be able to 
extrapolate significantly beyond the range of the calibration 
data with reasonable accuracy. On the other hand, high Q 
values indicate new variations that, even in relatively small 
amounts, may result in biased predictions.  

2.4  Example 

A synthetic data set was made up to illustrate the previous 
points. Consider a system based on NIR spectroscopy with 
one analyte of interest, (iso-octane), and a number of 
interferents, (initially heptane, toluene, decane and eventually 
also xylene). Pure component spectra were calculated from a 
real NIR data set (the pseudo-gasoline data from 
PLS_Toolbox 2014) using Classical Least Squares (CLS). 

These pure component spectra were then used along with a 
structured noise model created from the original data to 
create calibration data and “normal” test /validation data. In 
these data sets only iso-octane, heptane, toluene and decane 
were present and had approximately the same mean 
concentration values and covariance.  

Two additional data sets were created to illustrate common 
problems with prediction data. The first of these had the same 
four chemicals and the calibration data, but they had a 
different covariance structure than the calibration data 
resulting in many samples with unusually high T2 values. In 
the final data set xylene was introduced as a previously un-
modelled interferent resulting in samples with unusually high 
Q values. Each data set has 30 samples and 401 spectral 
channels. 

A Partial Least Squares (PLS) regression calibration model 
was built to predict the concentration of iso-octane using 
mean centering and 5 Latent Variables (LVs). Figure 1 shows 
the calibration model applied to the test set. As expected the 
test data (red diamonds) fall substantially within the 
calibration model limits. Also as expected prediction errors 
(RMSEP = .22) are slightly larger than the calibration error 
(RMSEC = .16) but close to the error of cross-validation 
(RMSECV = .21).  

 
Figure 1. Calibration model applied to “normal” data 
including Q versus T2 (upper left), scores on first two latent 
variables (upper right), predicted versus actual values for iso-
octane (lower left) and prediction residual versus sample 
number (lower right). In all plots the calibration data is 
shown as grey circles while the test data is shown as red 
diamonds. 

Figure 2 shows the calibration model applied to the high T2 
data set. The Q versus T2 plot shows many test samples with 
very high T2 values, some more than four times the 95% limit 
while Q values are only modestly higher. The scores plot 
shows that the test data largely fall outside the range of the 
calibration data. The predictions, however, have only 
moderately higher error despite the fact that they have gone 
completely outside the range of the original data.  This is 
expected due to the linearity of the system.   
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Figure 3 shows the calibration model applied to the high Q 
data set. The Q versus T2 plot shows many test samples with 
Q values 10-20 times the 95% limit indicating a new 
variation has been introduced into the data. This is of course 
the analyte xylene that was not present in the calibration data. 
The prediction error plot shows that the error gets 
progressively bigger versus sample number. This is because 
the concentration of xylene was ramped up over the data 
samples. But the concentration of xylene was not high 
relative to the other components, reaching a maximum of 6 
(arbitrary units) while the other analytes had mean 
concentrations in the range of 14-38. The prediction error 
averages over 10 times the error on the original test set.  

 

 
Figure 2. Calibration Model applied to high T2 data. 
Individual plots as in Figure 1. 

 
Figure 3. Calibration model applied to data with 
progressively high Q values. Individual plots as in Figure 1.  

This example illustrates that in linear spectroscopic systems 
high T2 samples might be tolerated if they do not also have 
high Q values. Samples with high Q values, however, are 
typically worse for prediction. The example also illustrates 
how some of the important prediction plots (Q versus T2, 
scores plots) might look for this situation. Additional 
information can be obtained by investigating the Q residuals 

(Wise, 1989) now commonly known as contribution plots 
along with T2 contribution plots (Wise, 1996).  

3. MODEL UPDATING METHODS 

There are many methods available for updating calibration 
models. The method of choice depends upon the nature of the 
change in the system. As a general principle, simple updating 
methods should be used first.  

3.1  Slope and Bias Adjustments 

Perhaps the simplest method for updating models is to post-
process the predictions with a slope and bias adjustment 
(DiFoggio, 1995). The need for this would be apparent from 
comparison with reference validation samples. Slope/bias 
adjustments can be expected to work under a limited set of 
circumstances. In the event the samples have a new analyte in 
them at a fixed concentration, or a formerly fixed 
concentration analyte has moved to a new concentration, it 
would be expected that the model predictions would be in 
error by a constant value, i.e. bias. Other relatively simple 
effects might lead to gain changes, such as clouding of optics 
or changes in sample pathlength, which would require a 
change in the model slope.  

Slope/bias adjustments, however, will not correct for any new 
variation in the data, such as a new analyte with a variable 
concentration. 

3.2  Adding Samples to the Calibration Set 

Under some circumstances, models can be updated by simply 
expanding the calibration set. For instance, in the event that a 
new analyte has been introduced into the samples, or a 
previously fixed analyte has begun to vary, then the model 
will produce incorrect predictions, and the model residual 
should indicate that the incoming samples are unusual. In this 
scenario, adding samples that exhibit the new variation to the 
calibration data may be sufficient. Multiple samples will 
likely be required in order for the model to capture the new 
variation. Methods for upweighting new samples, in order to 
minimize the number of samples required, exist (Stork 1999). 

3.3  Use of Instrument Standardization/Calibration Transfer 
Procedures 

Instrument standardization/calibration transfer methods are 
appropriate when the relationship between the samples and 
the data have changed due to changes in the instrument 
response, measurement conditions or sample matrix. Most of 
these methods attempt to map the response of the 
measurement system in its current state back to its response 
in its state during calibration. Methods include Shenk and 
Westerhuis, Direct Standardization (DS), Piecewise Direct 
Standardization (PDS, Wang 1991, 1992 and 1995), Spectral 
Space Transformation (SST Du 2011), Procrustes Analysis 
(PA, Anderson 1999), Artificial Neural Network (ANN) 
variants (Bouveresse 1996, Despagne 1998, Dreassi 1998), 
strategies based on modelling the model mismatch 
(Setarehdan 2002, Elizalde 2005), Wavelet Transforms 
(Greensill 2001), etc.  

−2 −1 0 1 2
−2

0

2

4

Scores on LV 1 (18.26%)

Sc
or

es
 o

n 
LV

 2
 (7

8.
66

%
)

0 20 40 60

−0.6

−0.4

−0.2

0

0.2

0.4

Sample

Y 
Re

sid
ua

l 1
 Is

o−
O

ct
an

e

0 20 40 60 80
0

0.5

1

1.5
x 10−4

Hotelling T^2 (100.00%)

Q
 R

es
id

ua
ls 

(0
.0

0%
)

5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Y Measured 1 Iso−Octane

Y 
Pr

ed
ict

ed
 1

 Is
o−

O
ct

an
e

 

 

R^2 = 1.000
RMSEC = 0.1629
RMSECV = 0.20756
RMSEP = 0.33352

Calibration
Test

−1 −0.5 0 0.5 1

−2

−1

0

1

2

Scores on LV 1 (18.26%)

Sc
or

es
 o

n 
LV

 2
 (7

8.
66

%
)

10 20 30 40 50 60
−1

0

1

2

3

4

5

Sample

Y 
Re

sid
ua

l 1
 Is

o−
O

ct
an

e

0 20 40 60
0

0.5

1

1.5

2

x 10−3

Hotelling T^2 (100.00%)

Q
 R

es
id

ua
ls 

(0
.0

0%
)

5 10 15 20 25 30
5

10

15

20

25

30

Y Measured 1 Iso−Octane

Y 
Pr

ed
ict

ed
 1

 Is
o−

O
ct

an
e

 

 

R^2 = 0.919
RMSEC = 0.1629
RMSECV = 0.20756
RMSEP = 2.6645

Calibration
Test

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 262



 
 

     

 

The vast majority of these methods require the use of transfer 
samples that are measured on the original instrument and the 
instrument to be standardized. Obviously, if using this 
method is contemplated when setting up a new measurement 
system, the transfer samples should be measured when the 
first calibration data is taken. Transfer samples ideally are 
similar to the calibration samples and exercise the instrument 
in similar ways. However, transfer samples can be more 
stable (non-perishable) samples such as rare earth oxide 
glasses. The key is that they have to vary in the areas of the 
spectrum upon which the calibration depends.  

Other methods can be used to eliminate the differences 
between instruments while preserving the things they have in 
common. This includes Orthogonal Signal Correction (OSC, 
Wold 1998, Sjöblom 1998) Generalized Least Squares (GLS, 
Martens 2003) weighting and explicit drift correction (Gujral 
2010). The down side of these methods is that they tend to 
reduce net analyte signal because they remove variation not 
common to both data sets. If this variation is similar to 
variation due to the analytes of interest, the subsequent 
calibration models may suffer.  Finite Impulse Response 
(FIR, Blank 1996) filtering belongs in this group of methods 
and has the added feature that it does not require matched 
transfer samples.  

The Extended Mixture Model (EMM, Martens 1991) and the 
very similar Prediction Augmented Classical Least Squares 
(PACLS, Haaland 2000) are modelling techniques that can be 
easily updated when new components are added to a 
calibration set. In practice, it is only important to model the 
subspace of the new components rather than the pure 
components themselves. Thus, the calibration set can be 
augmented with a basis for new variation, such as the 
loadings from a PCA model, or in some instances, 
polynomial baseline functions.   

Of the methods listed above, we have had the best results 
with DS and PDS. Some recent work suggests SST as a 
viable alternative as well. The main advantage of PDS is that 
it is able to work with a very small number of transfer 
samples, as few as three in some instances. However, as more 
transfer samples become available (10 or more), other 
methods, such as DS and SST, may outperform it. Also, all of 
these methods preserve net analyte signal and have the ability 
to map features at one wavelength to a different wavelength.  

The most commonly used standardization methods are 
compared in Table 1.  

3.4  Automatic Model Updating 

Methods for automatically updating multivariate linear 
regression models are well established. Recursive least 
squares (RLS, Hayes 1996) can be used to update MLR 
models as new data becomes available. It would be possible, 
for instance, to automatically update an MLR model every 
time a new reference value as available.   

RLS can be formulated either with or without “forgetting.” 
Without forgetting, models converge to the same result that 
would be obtained if the all the data had been used to develop 
the model in the first place. When forgetting is used, 

however, past data is progressively deemphasized, leading to 
a model that is based primarily on recent data. An adjustable 
parameter controls how fast past data is forgotten. The trade-
off becomes that of adapting to new variations quickly versus 
basing the model on too little data resulting in a model with 
large prediction errors.  

Table 1: Comparison of Properties of Common 
Standardization Methods. 

 
Methods for automatically updating PLS and PCR type 
models are less well established (Helland 1992, Qin 1998). 
Various approaches have been attempted with some success. 
While these methods have shown great utility in some 
instances, it is hard to imagine that automatic updating 
methods would be allowed in a regulated environment.  

3.5 Complete Recalibration 

Complete recalibration should only be considered as a last 
resort. It is done in the event that the original model has 
essentially no relevant information, which is unlikely. 

4. THE MODEL MAINTENANCE ROADMAP 

All the pieces discussed above come together in the flowchart 
shown in Figure 4. The starting point of the roadmap is a 
preliminary study and initial calibrations. After this a 
maintenance plan should be developed. Once the model is 
online its performance is monitored via its own internal 
diagnostic measures and (hopefully) regular comparison to 
external reference methods.  

 
Figure 4. Model maintenance roadmap flowchart 

When a performance problem is detected the first step is to 
establish the source of the problem. If the problem is simply 
out-of-range samples, additional samples can be measured 
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and the calibration model redeveloped. If a new interferent is 
detected, samples can also be added to the initial calibration 
set. Alternately, if the new interferent is constant, it may be 
possible to use a slope and bias adjustment on the existing 
model output. 

If the source of the model performance degradation is a 
change in the relationship between the measurement variables 
and the output, the reason for this should be established. If it 
is a sample matrix problem it may or may not be possible to 
add new samples to the existing calibration set depending 
upon the degree of the mismatch. If it is not possible, a whole 
new calibration set may be required.  

If instrument change is the source of the problem, there are 
many standardization methods available and a choice must be 
made. Complete recalibration is of course an option, but a 
very undesirable one. “Filtering” methods such as GLS and 
OSC are used on the original data and on any new samples 
and so require rebuilding the calibration model. “Mapping” 
techniques such as DS, PDS and SST can be applied to the 
new data and then the original calibration model can be 
applied directly.  

5.  AVOIDING MODEL UPDATING ALTOGETHER 

Sometimes updating models is unavoidable due to significant 
changes in the system, either the samples or the hardware. 
However, care during the calibration process can help 
minimize the chances that updating will be needed. For 
instance, certain data pre-processing schemes affect the 
robustness of multivariate models. The use of spectral 
derivatives makes models very sensitive to changes in the 
wavelength registration. Even very small changes of a 
fraction of a channel can make model performance degrade 
significantly. An example of this is shown in Figure 5, where 
the prediction error for a series of models (for moisture in 
corn) with different preprocessing is shown as a function of 
registration shift in the spectrometer.  

 
Figure 5. Model prediction error as a function of registration 
shift for models with mean centering, first derivative, second 
deriviative and multiplicative scatter correction. 

On the other hand, the addition of data smoothing, which 
often does not improve a model under initial conditions, can 
improve robustness to registration shifts. Variable selection 
can also be a significant factor in the robustness of models 
(Swierenga 1998 and 1999).  

The number of factors or LVs in models also affects their 
robustness over time. Models with too many LVs tend to be 
more brittle and predictions suffer considerably when even 
minor new constituents are added to the samples. Models 
with fewer LVs tend to not perform as well initially but not 
degrade as severely over time.  

The robustness of models to new interferents may be tested 
by adding peaks of variable width to the data and translating 
them across the wavelength axis. This process can be 
repeated for models with different numbers of LVs as 
illustrated in Figure 6. In Figure 6 the segment for each 
number of model LVs shows the prediction error for very 
narrow to very wide interferents top to bottom and interferent 
center location side to side. It can been seen that while 
models with fewer LVs are never as good (as indicated by 
their lighter blue background) they also do not suffer as badly 
to interferents as models with more LVS (more intense areas 
of high prediction error). It is evident that the largest errors 
are indicated for the model with 8 LVs for narrow 
interferents near 1900 nm.  

 
Figure 6. Model prediction error as a function interferent 
peak width, peak location, and number of model LVs. 

As in the example with registration shift in Figure 5, different 
preprocessing schemes can affect the models ability to 
tolerate new interferents. The wavelength ranges considered 
can also impact model robustness and longevity. 

We have seen where some modellers actually over-fit their 
models with the strategy of using them for a short period of 
time and subsequently update their models considerably more 
regularly. We don’t consider this to be a conservative 
approach in either the amount of risk it involves or the level 
of effort needed to update the models much more frequently. 
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6. CONCLUSIONS 

Many applications of PAC ultimately fail because it was 
assumed that the model-instrument system would operate 
forever as it did on day one. This is seldom the case and the 
installation plan should include a plan for updating the model 
going forward. There are many things to be considered in this 
plan, and no single procedure can address all possible 
changes in the system. The model maintenance roadmap, 
while likely not exhaustive, covers the most likely 
possibilities and can serve as a starting point for developing a 
plan for a specific application.  Finally, modelling choices 
affect the robustness of the system to changes and should be 
considered during model development. 
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