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ABSTRACT

Many chemical processes have a very large number of measured
variables that are recorded frequently. Often, many of these
variables are highly correlated and thus provide some redundant
information concerning the state of the process and its sensors.
When this is the case, multivariate techniques such as Principal
Components Analysis and Partial Least Squares calibration can be
used in conjunction with Statistical Process Control methods to
identify process upsets and sensor failures. We refer to this
combination of technologies as Multivariate Statistical Process Control
(MSPC). Examples are shown for two types of sensor failure. The
first class is where sensors develop a bias. The second class is where
sensors become corrupted by noise. We show how confidence limits
can be put on PCA residuals for the purpose of detecting failed
sensors of both types. This method is compared to a PLS based
method where individual variables are calibrated against other
system variables and the prediction residual is used in a manner
similar to the use of PCA residuals.

1.0 Introduction

Because of recent advances in on-line analytical instrumentation,
chemical processes produce much more real-time data than in the
past. Most of this data is not used to the fullest advantage, however,
because of the lag time between the development of the
instrumentation and the data processing algorithms. Data from
processes with many sensors often is highly correlated and thus
provides some redundant information, although this is not always



apparent from an initial inspection of the data. This paper discusses
how two multivariate data analysis techniques, Principal Components
Analysis (PCA) and Partial Least Squares (PLS) calibration, can be
used in conjunction with techniques from Statistical Process Control
(SPC) to detect failed process sensors and process upsets in systems
that have many process sensors. We refer to this combination of
techniques as Multivariate Statistical Process Control (MSPC). These
techniques also have the advantage that they reduce the amount of
process information that operators must review.

In this article we briefly review some of the mathematics of the
techniques. We then show how these tools can be used to detect
“generic” process upsets and sensor failures. We consider the cases
of sensors that have developed a bias and sensors that have become
corrupted by noise. The effect of serial correlation on the detection
problem is also considered.

2.0 Background

This section is provided to give the reader some information
concerning the current state of multivariate methods as applied to
chemical process data. The ground work for this research comes
from many areas, however, and it is beyond the scope of this
document to trace them all. Instead, the theory behind PCA and PLS
will be reviewed. The emphasis will be on the objectives of the
methods rather than the algorithms, which can be found in other
references.

2.1 Principal Components Analysis

In PCA an m by n data matrix X is decomposed into the sum of
the product of n pairs of vectors [1, 2]. Each pair consists of a vector
in n called the loadings, pi, and a vector in m referred to as the
scores, tj. Thus X can be written as

X =t1p1" +top2T+ ..+ thpn' (@B)



The matrix of loadings vectors P forms a new orthogonal basis for
the space spanned by X and the individual pj are the eigenvectors of

the covariance matrix of X, defined as:

cov(X) = (1/(m-1)) XTX 2
Thus
cov(X)pi = ipi 3)
where | is the eigenvalue associated with the eigenvector pj. The

loadings vectors are often referred to as principal components, or as
"latent variables” (particularly in PLS) because they are linear
combinations of the original variables that together explain large
fractions of the information in the original matrix. Each of the the t;
is simply the projection of X onto the new basis vector p;j:

tj = Xpi 4)

The value of each | is an indicator of the variance in the data set
associated with the direction pj. In fact

fraction variance in direction pj =1 /Sl ; (5

In a data set that has been scaled to have variables of zero mean
and unit standard deviations

Sli=n (6)

where n is the number of variables in the data set. In this case, each
of the scores vectors t; will then have a mean of zero and a standard
deviation equal to (| j)1/2. Statistical confidence limits can be placed
on the scores using the standard normal deviate and the expected
variance as calculated from the eigenvalues. Thus, if the desired
confidence limit is 95%, then the value of the standard normal
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deviate is 1.96 and the upper and lower control limits for each vector
pi, UCLj and LCL; are calculated as:

UCL; = 1.96(] {)1/2 (7
LCL; = 1.96( {)1/2 (8)

The scores can be adjusted to unit variance (which is convenient for
other statistical tests, as will be shown) by dividing through by the
associated eigenvalues

tiadj = ti/l i (9

PCA is very closely related to the Singular Value Decomposition
(SVD) [3] where a data matrix X is decomposed as

X = USVT (10)

where V contains the eigenvectors (pj) and S is a diagonal matrix
containing the square roots of the eigenvalues (the singular values)
of the covariance matrix of X.

Once the eigenvectors have been determined using PCA or SVD,
projections of the data onto the eigenvectors can be made. These
projections are commonly referred to as "scores plots" and are often
useful for showing the relationships between the data points. Plots
can be done as the projections of the samples onto a single
eigenvector versus sample number (or time) or onto the plane
formed by two eigenvectors. A projection of the samples onto the
two eigenvectors associated with the largest eigenvalues depicts the
largest amount of information about the relationship between the
samples that can be shown in two dimensions. It is for this reason
that PCA is often used as a pattern recognition and sample
classification technique.

Plots of the coefficients of the eigenvectors themselves, known
as "loadings plots”, show the relationships between the original



variables in the data set. Correlations between variables show up in
the loadings plots.

When PCA is done on a data set it is often found (and it is
generally the objective) that only the first few eigenvectors are
associated with systematic variation in the data and that the
remaining eigenvectors are associated with noise. Noise in this case
refers to uncontrolled experimental and instrumental variations
arising from random processes. PCA models are formed by retaining
only the eigenvectors which are descriptive of systematic variation
in the data. Determination of the proper number of eigenvectors can
be done by cross-validation or other techniques. Once the PCA model
is formed new data can be viewed as projections onto single
eigenvectors or the plane formed by pairs of eigenvectors. The
"goodness" of fit between new data and the model can be monitored
by calculating the data residual. For a reduced order model Pk
(where only the first k of the n total eigenvectors were retained) and
a new sample set X the residual matrix R is given by

R=( - PkPKNX (11)
The magnitude of the residual for any sample Xj in X is
Q=|Irill =riTri =xiT(I - PkPkTX; (12)

and expresses the "goodness of fit" of the new sample to the model
Pk as a scalar. It can be calculated by taking the sum of squares of
the components of rj. Jackson [4-7] showed that approximate
confidence limits can be calculated for the model residual Q provided
that all the eigenvalues of the covariance matrix are known, as

shown below:
2
Q.| ¢V 2Q,hg Q,hdho- 1)
Qy= — = — +1+
hO Ql 2

Q

(13)



n R
Q=4 ljfori=123
where j=k+l (14)

2Q,Q4
2
and 3Q; (15)

hozl‘

In (13) above c; is the normal deviate corresponding to the upper (1
- a) percentile. Equation (14) simply states that the Q; are equal to
the sum of the eigenvalues for the eigenvectors not used in the
model taken to the ith power. Note, however, that this result was
derived assuming random errors of mean zero etc. It is not clear
how autocorrelated data from a real process would affect this result.

The variables responsible for large Q values can often be found
through normal statistical process control methods which track single
variables. However, there are instances when these methods fail to
detect systematic changes in the process or its sensors because the
values of the individual variables have not gone "out of bounds" but
have instead just become uncorrelated (or changed their correlation)
with the remaining variables.

There are several methods for determining the source of the
large Q values in this case. The simplest method is to calculate the
column norm (the sum of squares over the variables, instead of over
the samples, as is done to calculate Q values) for the residuals matrix
for the samples with large Q values. Generally, the perturbed
variables will show up as having the largest residuals. This method
can fail, however, because it does not account for the fact that the
average size of the residual is different for different variables in a
data set. What is needed is confidence limits on the residuals so that
it is possible to determine if the residuals are abnormally large or
noisy.

In other cases the factors responsible for large values of Q can be
found by subjecting the matrix of rj vectors to PCA. This determines
the major source of variation in the data not accounted for by the
original PCA model. Typically the variable with the largest (absolute



value) coefficient in the first eigenvector from the residuals matrix
will be the variable responsible for the deviation of the PCA model.

While the Q statistics offer a way to test if the process data has
shifted outside the normal operating space, there is a need for a
statistic that provides an indication of unusual variability within the
normal subspace. This is provided by Hotellings T2 statistic [8]. The
value of T2 for a sample is equal to the sum of squares of the
adjusted (unit variance) scores on each of the PCs in the model. The
statistical confidence limits for the values of T2 can be calculated by
taking advantage of the statistical F-distribution as follows

(16)

Here m is the number of samples in the data set used in the
calculation of the PCA model, p is the number of principal component
vectors retained and a corresponds to the standard normal deviate.

The residual variance for each variable can also be calculated
for the PCA models. It can be shown that for a given data set X with
a full set of PCA vectors P, of which k are retained, and eigenvalues
| , then the variance of the residual for the jth variable is

n
sf=a pil
i=k (17)

where pij is the loading of the jth variable in the ith PC. For the data
matrix from which the model was obtained this relationship will be
exact. If however it is assumed that the eigenvalues of all the PCs
not retained in the model are equal (which is generally the
assumption when they are not used) then the variance in the
residual of the jth variable can be estimated using only the PCs and
eigenvalues retained in the model from

S (8, & §
sit=la li- a li{1- a pj§
i=1 i=1 i=1 (18)



The first term on the right hand side of equation (18) can be
replaced with the total sum of squares which is equal to the sum
over all of the eigenvalues.

Now that we have an expression for variance of the residual for
each variable we can test to see if the observed variance in a
residual is equal to the expected variance. For this we can use the
standard F-test with the appropriate degrees of freedom. We will
test to see if

Sj 2new/szoId >Fy-new,v-old,a (19)

where v-new is equal to the number of new samples minus the
number of PCs used in the model minus one and v-old is the number
of samples used to obtain the original model minus the number of
PCs minus one. When the inequality in equation (19) holds then a
change in the variance of the residual has occured to a confidence
level of 1 - a. The F-test parameters can now be used to set upper
and lower limits on the variance of the residuals.

Because of the scaling we have chosen the mean residual should
be zero for all the variables. In order to detect a shift in the mean
away from zero, however, we can use the t-test. In our case the
hypothesis we want to test is that the means are equal. Thus the t-
test reduces to

(Xiold - Xnew)(VoId + Vnew)O'5

(1/V0Id + :I-/Vnew)O.5 (Volcﬁgld + VnewS%eW)O.5 (20)

tytor =

where the degrees of freedom are both one greater than for the case
given above. For the purpose of setting limits, the variances can be
assumed to be equal to the variance of the residuals of the
calibration set. Furthermore, once the desired confidence level is
chosen, it is possible to solve for the difference between the old and
new means that is just significant.



2.2 Partial Least Squares

PLS regression methods are well described by Hoskuldsson [9]
and the history of PLS is covered quite well by Geladi [10]. A
theoretical foundation for PLS is provided in the reference by Lorber
et. al. [11]. Here we present a brief description of the method and
outline the computational steps.

PLS is a multivariate calibration technique where a data matrix
of inputs, known as the X or independent block, can be calibrated to
a matrix of outputs, the Y or dependent block [12, 13]. PLS can be
thought of as a simultaneous decomposition of the X and Y blocks
using PCA. In PLS, however, the eigenvectors are rotated in each of
the blocks so that the samples have the same "scores”. To put it
another way, the projections of the independent variables onto the
first "rotated eigenvector™” of the X block will be highly correlated to
the projections of the dependent variables onto the first "rotated
eigenvector” of the Y block and so on.

Mathematically, the PLS algorithm exchanges the scores
between the X and Y blocks as the matrix decomposition proceeds,
resulting in highly correlated "eigenvectors" (latent variables). The
PLS algorithm can be found in several of the references.

PLS can be contrasted with Multiple Linear Regression (MLR)
by noting that MLR is a special case of PLS, i.e., MLR is equivalent to
using all the latent variables in PLS. In MLR the vector of
coefficients bj mir is estimated for each of the yj inY as

bi,mir = (X'X)1X'y;j (21)
thus the estimated value of Y is
Yest = XB (22)
where B is composed of the column vectors calculated in (21). While
MLR generally gives a better fit to the calibration data because it

uses all the variation in the X block, PLS often gives better prediction
because it uses only the predictive information.



The parameters used in PLS prediction can also be reduced to a
single linear equation, similar to that of (22):

Yest = XC (23)

where Cis a matrix in the general case and a vector in the case of
only one variable in the Y block. The result is equation (24) where
lv is again the number of latent variables to be used in the prediction
(as above) and it is assumed that the value of the term in brackets is
equal to | for the case of i = 1.

Iov izl , ,
Y=Xa bi[ (I - wjpj)]wiqi
i=1 |j=1 (24)
In (24) the bj are the inner relation coefficients, the wj and the p;
are the X block weights and loadings and the qj are the Y Dblock
loadings.

It is proposed that PLS can also be used to determine the
general state of the process in a fashion similar to the use of the Q
statistics associated with PCA models. This requires that PLS models
be obtained that relate each variable to the remaining variables in
the system. Thus for a system with n variables, n PLS models would
be required. Fortunately, using the relationship given in equation
(24) the n PLS models can be formed into a single matrix, with each
model being a column vector. Because each of the variables does not
contribute to its own prediction, the resulting prediction matrix, Mp,
has zeros on the diagonal. Thus the PLS prediction Xegst, of a data
matrix X can be obtained by simple matrix multiplication

A residuals matrix, Rpjs, can be calculated from

Rp|s =X - Xest =X-X Mp = X(I - Mp) (26)
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The similarity between equation (26) and the calculation of the PCA
residuals in equation (11) should be readily apparent.

The residuals matrix Rpjs can be used in much the same
manner as the PCA residuals matrix R for determination of the
overall state of the process (as in calculation of Q) or for determining
the failure of specific sensors. In the latter case PLS predictions for
each variable can then be compared with the actual values, and the
off-normal variables can be identified [14]. This approach is the
generally accepted method for process fault detection. A model is
produced which predicts the value of a process variable from other
process variables and the difference is monitored. The idea of using
PLS in this fashion is related to the general idea of prediction of
process output using secondary measurements, such as the example
provided by Mejdell and Skogestad in [14].

2.3 Data Pretreatment

Before completely leaving the topics of PCA and PLS a word
about preprocessing of data is in order. In particular, scaling of
variables is very important to PCA, PLS and other eigenvalue
analysis type methods. This is because eigenvectors will tend to be
biased towards variables with larger numerical values since they
appear to be associated with greater amounts of variance. For this
reason we usually use a procedure know as "autoscaling” is with each
data set prior to analysis with PCA or PLS. The mean is subtracted
from each variable (mean centering) and the result is divided by the
standard deviation (variance scaling) to produce a matrix with
variables of zero mean and unit variance. The use of this technique
implies that the variables are of equal importance which is a good
starting point given no other information.

Elimination of outliers is also a good idea, since these data
points have a great deal of leverage on the data models and can
change them significantly. PCA can be used for data pretreatment to
detect outliers.

Finally, it is important to note that the PLS and PCA techniques
are linear, and as such, will not provide good models of highly non-

11



linear data. If the functionality of the non-linearities is known, it is
best to pretreat these variables so that the resulting variables are
linear.

3.0 Using MSPC to detect “Generic” Upsets and Sensor Failures

In this section we will consider the general problem of
identifying failed sensors and process upsets through application of
the multivariate tools and SPC techniques described previously. In
this section we will assume that we have no specific upsets that we
are looking for, but instead, are trying to determine the general
health of the process, including its sensors. For this reason, the upset
detection schemes we will apply here will all be based on process
residuals, the difference between the behavior of the actual process
and a model. We will consider PCA and Varimax models in the first
section and PLS based models in the second section, and demonstrate
them with some representative examples.

3.1 Using PCA with Non-Serially Correlated Data

In this example we will consider a synthetic process with 10
variables that has a true rank of 5. Variables will have a noise
component that is equal to .5 times the standard deviation of the
deterministic variation. The process for this example was generated
at random, though some care was taken to assure that the process
generated was not “close” to being of rank less than 5. The process is
assumed to be excited by random noise. A data matrix of 1000
samples was generated for the process and a Principal Components
Analysis performed. The results are shown in Table 1.

Here we will choose a 5 PC model of the process data, because
we know the process that we generated is intrinsically 5
dimensional. In actual practice the order of the model may have to
be determined either from cross validation of the PCA models or by
comparison of the size distribution of the smaller eigenvalues to the
expected distribution of “error eigenvalues”. The control chart for

12
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Example Process Residual Q with 95% Confidence Limits
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Figure 2. Data Residual Q for Example Process with 95% Confidence
Limits

The variance of the residual for each variable was calculated
using equation (17) which weights the residuals by the eigenvalues
of the PCs not kept in the model and with equation (18) which
assumes that all eigenvalues of the unused PCs are equal. The
results of these calculations are compared to the actual variance of
the residuals in Figure 3. The actual variance is shown as the solid
line and coincides exactly with the variance calculated from equation
(17) which is shown as the circles. The variance calculated from
equation (18) is shown as the dashed line.

In the calculations that follow we will use the variance estimate
that assumes equality of the eigenvalues since they should in
principle be equal because the process is intrinsically 5 dimensional.
If some small PCs that were thought to contain some intrinsic
variation were not retained in the model then it may be more
appropriate to use equation (17).
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0.16 Actual and Predicted Residual Variance for Example Process
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Figure 3. Actual and Predicted Variance for Example Process Using
Equations (17) and (18).

Control limits on the mean and variance of the residuals can be
calculated using the F and t statistics once the desired confidence
level and the size of the sampling window for incoming data is
known. In this example we choose a confidence of 99% and a
window of 50 samples. The confidence limits calculated by this
procedure are shown in Figures 4 and 5. A cross validation
procedure was also performed to determine if the control limits
established from theory were correct. The limits were found to be
nearly identical.

At this point the reader may wonder why 50 points was chosen
for the test sets. For this synthetic example the number is somewhat
arbitrary. In actual practice, one would want to chose a number of
samples that was relevant to the process sample time and time
constants. While a large number of samples would allow us to detect
smaller perturbations in the process, it will also increase the time
required to detect a shift. The number of samples should therefore
be the largest number possible that is within the time span of
interest.
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Predicted Variance of Residuals with 99% Control Limits
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Figure 4. Predicted Variance of Residuals with 99% Control Limits
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Figure 5. Predicted Mean of Residuals with 99% Control Limits.

Two types of sensor faults will be generated and used to test the
method. First we will consider a bias type error, where a constant
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offset is added to a variable. Figures 6 and 7 show a typical result
for a bias that is equal to 0.2, 0.4, and 0.6 standard deviations of the
original variable number 5. (Remember that in this example the
noise component is equal to 0.5 times the intrinsic variability.) In
Figure 6 we see that the mean of the residuals calculated is clearly
outside the confidence limits for the high bias case. In Figure 7,
however, all cases lie within the confidence limits for the variance, as
would be expected. If the test was performed as an actual moving
window, however, we would expect to see an increase in the amount
of variance in the biased variable as the window passes over the
point where the bias was initiated.

In order to make it easier to distinguish the biased variable it is
convenient to ratio the mean residuals to the detection limits. When
this is done all “normal” variables should have values less than one.
The more biased a variable is the larger its ratio will be. Figure 9
shows that variable 5 is the most biased quite clearly. Note that
other variables have also gone over the limit. This is typical for
highly correlated variables.

0.2 Residua Mean with Detection Limits-Bias on Variable 5-PCA
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Figure 6. Residual Mean with Detection Limits for Bias of 0.2, 0.4 and
0.6 Standard Deviation on Variable 5-PCA Model
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0.25

Residua Variance with Detection Limits-Bias on Variable 5-PCA

0.2
0.15

01

Residua Variance

0.05

Variable Number
Figure 7. Residual Variance with Detection Limits for Bias of 0.2, 0.4

and 0.6 Standard Deviation on Variable 5-PCA Model

25 Residual Mean Ratio to Detection Limits-Bias on Variable 5-PCA
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Figure 8. Mean Residual Ratio to Detection Limits for Bias of 0.2, 0.4
and 0.6 Standard Deviation on Variable 5-PCA Model
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In the second test additional noise was added to selected
variables. The amount of noise was equal to 0.4, 0.6 and 0.8
standard deviations of the original variables. An example of the
effect of the added noise on the residuals is shown in Figures 9 and
10. In this example noise was added to variable number 6. Figure 9
shows that the mean of the residual for the 50 samples falls within
the 99% confidence limits, as would be expected. There is some
change in the calculated mean residual, however, due to the fact that
the noise added does not have a mean of zero over the small number
of samples In Figure 11 the variance of the residual for variable 7 is
clearly outside the limits for the 0.6 and 0.8 cases.

The value of the confidence limits can be seen in Figures 12 and
13. For this example noise was added to variable 3. Without the
limits it would not be evident that variable 3 was any different from
the remaining variables, even in the high noise case. In fact, in
absolute terms, the variance of variable 6 is much larger. The
addition of the confidence limits, however, shows that the variance of
variable 3 is outside the limits, while for variable 6 it is not.

0.15 Residual Mean with Detection Limits-Noise on Variable 6-PCA
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Figure 9. Residual Mean with Detection Limits for Noise Increase of
0.4, 0.6 and 0.8 Standard Deviations on Variable 6-PCA Model.
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Residua Variance with Detection Limits-Noise on Variable 6-PCA
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Figure 10. Residual Variance with Detection Limits for Noise Increase
of 0.4, 0.6 and 0.8 Standard Deviations on Variable 6-PCA Model.
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Figure 11. Residual Variance Ratio to Detection Limits for Noise
Increase of 0.4, 0.6 and 0.8 Standard Deviations on Variable 6-PCA
Model.
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0.25 Residual Variance with Limitsfor Noise on Variable 3-PCA
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Figure 12. Residual Variance with Detection Limits for Noise Increase
of 0.4, 0.6 and 0.8 Standard Deviations on Variable 3-PCA Model.

Residud \/ariance Ratio to Limit for Noise on Variable 3-PCA

13

11+ s

Residual Variance Ratio

°T 2 3 4 5 6 7 8 9 10
Variable Number

Figure 13. Residual Variance Ratio to Detection Limits for Noise
Increase of 0.4, 0.6 and 0.8 Standard Deviations on Variable 6-PCA
Model.
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The question may arise concerning why variables other than the
failed variables go outside their limits at all. This is because in the
projection process any errors tend to get spread out among highly
correlated variables. In fact, if one looked back at the original
covariance matrix for this data set we would find that the variables
that are most highly correlated with variable 7 are variables 6 and 4.

The effect of these “sensor failures” on the Q values was also
investigated for these cases. It was found that the Q values did not
show a statistically significant difference between “normal” data and
the data from perturbed sensors in any of the cases tested. Thus it is
clear that Q statistics are not very sensitive to relatively small
changes in single sensors. This is not surprising since Q is an overall
measure and would not be expected to have as much sensitivity for
individual variables.

3.2 Using PLS with Non-Serially Correlated Data

As a comparison to the PCA based methods above we will now
consider PLS based models. It was shown in the background section
how PLS derived regression vectors could be inserted into a matrix
and a PCA-like residual calculated. In this section we will use that
method on the exact same data set used in the previous examples.

The number of latent variables to be used in the PLS model was
fixed at 5. The control limits for the mean and variance of the PLS
based residuals were obtained through cross validation. In this
procedure a PLS model was obtained for the entire data set of 1000
points. Residuals were then calculated based on the model for 1000
test sets of 50 samples each. The 99% control limits were then
selected based on the total of 1000 trials. The resulting control limits
are shown in Figures 14 and 15 below, along with the worst
calculated cases. Alternately, control limits could have been
calculated based on the observed variance in the PLS residuals in a
manner analogous to that used for the PCA model control limits.
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Figure 14. Mean of PLS-Based Model Residuals with 99% Confidence
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It is interesting to compare the variance of the PLS models
residuals to those obtained for the PCA models. The PLS residuals
have considerably more variance. This is not surprising, though,
because of the difference in the way the residuals are actually
calculated. The PLS prediction for each variable is based only on the
other variables, each variable does not contribute to its own
prediction. This is not the case with PCA. The projection operation in
PCA includes information from every variable. In essence each
variable is used in its own prediction. The result of this is that the
PLS residuals are typically much larger than the PCA residuals.

The PLS model was tested with the same data used in the test of
the PCA model. The same data was used in the examples below that
was used for the PCA model tests shown in the previous section. The
results of the bias test are shown in Figures 16 and 17 below. Figure
16 shows that in the test for a bias on sensor 5 the mean residual
exceeds the limit at all three of the bias levels tested. In addition,
some other variables exceed the limits for the high bias case. None
of the variables exceed the limits for variance, shown in Figure 17, as
would be expected. Figure 18 shows the ratio of the residual mean
to the limits.

The results of the added noise test for the PLS model are shown
in Figures 19 and 20. The added noise does not cause the mean
residual of any of the variables to exceed the limit as expected. In
the variance plot and the ratio plot shown in Figure 21, however, we
see that the variance limit has been greatly exceeded on variable 7
in the high and intermediate noise case and modestly exceeded in
the low noise case. Other variables exceed the limits in the high and
intermediate case also, but by very small amounts relative to the
PLS-based residuals.
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Residual Mean with Detection Limits-Biason Variable 5-PLS
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Figure 16. Residual Mean with Detection Limits for Bias of 0.2, 0.4
and 0.6 Standard Deviation on Variable 5-PLS Model
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Figure 17. Residual Variance with Detection Limits for Bias of 0.2,
0.4 and 0.6 Standard Deviation on Variable 5-PLS Model
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Residua Mean Ratio to Detection Limits-Biason Variable 5-PLS
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Figure 18. Residual Mean Ratio to Detection Limits for Bias of 0.2, 0.4
and 0.6 Standard Deviation on Variable 5-PLS Model
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Figure 19. Residual Mean with Detection Limits for Noise of 0.4, 0.6
and 0.8 Standard Deviation on Variable 6-PLS Model
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Residual Variance with Detection Limits-Noise on Variable 6-PLS
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Figure 20. Residual Variance with Detection Limits for Noise of 0.4,

0.6 and 0.8 Standard Deviation on Variable 6-PLS Model
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Figure 21. Residual Variance Ratio to Detection Limits for Noise of
0.4, 0.6 and 0.8 Standard Deviation on Variable 6-PLS Model
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It is interesting to compare these results to those of the PCA
based model. We see that the PLS based model does not tend to
spread the error over other variables as much as the PCA model.
Thus it appears to be more specific. At the same time, it appears to
be more sensitive, exceeding the confidence limit at lower noise and
bias levels. In order to compare the detection power of the models
the control limits of the PCA model were converted to be on the same
basis as the PLS model limits. This is done by first determining the
ratio, h, of the change of a variable to the change in its residual,
which is equal to the inverse of the diagonal elements of (I - PxPk’)

h = (diag(l - PxPk))1 (27)

The PCA limits for mean can then be scaled by the h vector. The
variance limits must first be converted to standard deviations, then
scaled and converted back to variance limits. The results of this
procedure allow us to compare the limits of the PCA and PLS models,
which are shown in Figures 22 and 23.
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Figure 22. Detection Limits for Bias Errors For PLS(_ ) and PCA(--)
Models
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Noise Variance Detection Limitsfor PLS () and PCA (--) Models
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Figure 23. Detection Limits for Noise Errors for PLS(_ ) and PCA(--)
Models

From the figures we can see that the control limits for the PLS
based model are “tighter” than for the PCA model. For some
variables they are about the same, but for some variables, such as 3,
5 and 10, the difference is significant.

In order to further investigate the ability of the models to detect
errors a simulation was performed. In this test a set of 50 samples
was selected at random from the data set 1000 times. Noise or bias
errors were added to one variable in the test set. This was repeated
6 times for each variable in the test set: three amounts of bias and
three noise levels were added to each variable in turn. The residuals
of the perturbed data were then calculated based on the PLS or PCA
models and compared to the limits using the ratio test. The number
of times the perturbed variable was identified was recorded, along
with the number of misidentifications and the number of cases were
no variables were detected “out of bounds”. The results of these
trials are presented in Table 2. The number of misidentifications is
listed under the column headed “Wrong” and the number of
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instances where no variable was identified is under the column
headed “None”.

Table 2. Results of Simulation to Test Error Detection Ability of
PLS and PCA Based Models

Noise Test

PLS Model PCA  Model
Level Correct W ong None Correct Wong None
0.8 9893 29 78 8992 392 616
0.6 8910 293 797 7318 736 1946
0.4 4676 991 4333 3443 1137 5420
Total 23497 1313 5208 19753 2265 7982

Bias Test

PLS Model PCA  Model
Level Correct W ong None Correct W ong None
0.6 9998 2 0 9729 257 14
0.4 9808 157 35 8811 896 293
0.2 5536 1748 2716 4466 2262 3272
Total 25342 1907 2751 23006 3415 3579

The results show that the PLS based model provides significantly
fewer “wrong” responses in any case. It is also more sensitive at the
lower noise or bias levels than the PCA model.

3.3 The Effect of Serial Correlation on PCA and PLS Residuals

In this section we will consider the effect of serial correlation on
the analysis of the residuals from PCA and PLS. We will use as an
example data from a proprietary high temperature process that has
20 temperature measurements and 1 level measurement. In this
system the temperatures are all highly correlated because the
measurement locations are physically close in a process vessel. The
temperatures are also correlated with the level, which varies. In
addition, the data is serially correlated because of the thermal inertia
and time behavior of the level.

For this example we had available a data record of 1400
samples. We will use the first 500 points in the record as the
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training set and test our models using portions of the remaining 900
samples. The first step in the analysis was to scale the first 500
points to zero mean and unit variance. These scaling factors were
retained so that they could be applied to the remainder of the data
set. An initial survey of the data was performed with PCA so that
any anomalous data points could be deleted, however, in this data set
none were found.

In this process our time constant of interest is equal to ~25
sample intervals. This is based on both operator experience and
calculation of the correlation time in variables. Thus we will use a
“window” of 25 samples for our tests. In order to test the effect of
the serial correlation we will calculate control limits for the PCA and
PLS models in two ways. In the first case we will calculate the
control limits just as in the previous section. In this case the order of
the samples was not retained. For the PLS model 200 repetitions
were used. In the second case the order of the samples was retained.
A test set of 25 consecutive samples was chosen and this procedure
was repeated 250 times, so that the test set indices could be
incremented by 2 units each time to cover the entire data set. The
control limits were set based on the 99th percentile of the calculated
residual mean and variance. The control limits for both the PCA and
PLS models were set in this way.

The resulting confidence limits, calculated both ways, for the
mean and variance of the PCA models are shown in Figures 24 and
25. The corresponding limits for the PLS model are shown in Figures
26 and 27. The dashed line in the figures corresponds to the
randomized data, while the solid line is for the data in which the
order was retained. Note how the confidence limits for the mean in
Figures 24 and 26 have widened considerably for the case of the
serially correlated data, as might be expected. This is due to the
correlation between residuals in samples that are close together in
time. The confidence limits on the variance in Figures 25 and 27,
however, are about the same for both the correlated and
uncorrelated data. This is probably not a general result. In general
we would expect to see somewhat less variance in the non-
randomized data because the serial correlation. If the window width
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is large relative to the correlation time, however, we would expect
the variance to be the same in either case.
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Figure 24. Residual Mean 99% Confidence Limits for Random
(dashed) and Serially Correlated (solid) Data-PCA Model.
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Figure 25. Residual Variance 99% Confidence Limits for Random
(dashed) and Serially Correlated (solid) Data-PCA Models.
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Figure 26. Residual Mean 99% Confidence Limits for Random

(dashed) and Serially Correlated (solid) Data-PLS Model.
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Figure 27. Residual Variance 99% Confidence Limits for Random

(dashed) and Serially Correlated (solid) Data-PLS Model.
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Some examples of simulated noise errors are shown in Figures
28 - 31 for the PLS and PCA models. In Figure 28 we see the effect
on the PLS residuals of adding progressively more noise to variable
7. Note that variable 7 does not have the largest residual. When the
residuals are ratioed to the control limit, however, the fault in
variable 7 is clear, as shown in Figure 29. Similar results are shown
for the PCA model in Figures 30 and 31. In the PCA case, however,
the model does not detect the error for the low noise case.

The detection limits were calculated as in the previous section
for the PLS and PCA models, and rescaled back to the original units
of the variables. The actual detection limits in degrees C for noise
and bias errors are shown for the models in Figures 32 and 33. The
PLS model has considerably tighter limits for detecting bias errors
than the PCA model in all but one variable. We see similar results
for the detection of noise errors, with the PLS model having tighter
limits in all but one variable.

PLS Residual Variance Plot Detecting Noisein Variable 7
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Figure 28. Variance of Residuals with Control Limits for Noise of 0.2,
0.5 and 1.0 on Variable 7-PLS Model
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Figure 29. Variance of Residuals Ratio to Control Limit for Noise of
0.2, 0.5 and 1.0 on Variable 7-PLS Model
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Figure 30. Variance of Residuals with Control Limits for Noise of 0.2,
0.5 and 1.0 on Variable 7-PCA Model
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Figure 31. Variance of Residuals with Control Limits for Noise of 0.2,
0.5 and 1.0 on Variable 7-PCA Model
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Figure 32. Detection Limits for Bias Errors For PLS and PCA Models
in Original Units
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Detection Limitsfor Increase in Noise for PCA (0) and PLS (+) Models
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Figure 33 Detection Limits for Noise Errors For PLS and PCA Models
in Original Units

In order to better determine the relative advantages of the PCA
and PLS models a simulation was performed where data was taken
from the test set and noise (with std. dev. of 0.2, 0.5 and 1.0 times
the variable std. dev.) and bias errors (of 0.4, 0.6 and 0.8 times) were
added in a manner analagous to the procedure used with the
synthetic data. A 10 PC model was tested in addition to the 6 PC
model used in the examples above. The results of the trials are
shown in Table 3, where the number of correct responses are shown
out of a possible 3675 (21 variables times 175 trials).

Table 3. Comparison of PLS and PCA Models for Detecting Errors
in Process Data-Correct Responses

Bias Errors Noise Errors
PLS PCA-6 PCA-10 PLS PCA-6 PCA-10
H gh 2920 2963 2375 2603 2695 2126
Med. 2122 1929 1971 1929 1704 1791
Low 1191 362 796 1238 479 911
Tot al 6233 5254 5142 5770 4878 4828
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For the high noise and bias cases the 6 PC model has the largest
number of correct responses and was followed closely by the PLS
model. At the medium and low noise and bias cases, however, the
PLS model provided the most correct responses. It is interesting to
note the behavior of the 6 PC model relative to the 10 PC model. The
10 PC model detects small errors much more often than the 6 PC
model, but is wrong more often in the large error case.

5.0 Conclusions

In this paper we have shown how control limits can be placed on
the residuals associated with PCA models. These limits enable us to
detect failed sensors unambiguously in most instances. This would
not be possible without the limits since the residual variance of
individual variables can vary widely.

It has been shown that Partial Least Squares can be used to
generate PCA-like residuals. Limits can be placed on the PLS
residuals in a manner analogous to the PCA case. It appears that
these PLS models are more sensitive than the PCA models for
detection of sensor faults.

The effect of serial correlation on the calculated control limits
has been demonstrated. This must be accounted for in setting limits.

Finally, we have some indication that for PCA models there is a
trade off between sensitivity and selectivity as the model order is
increased.
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