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Plasma Metal Etch

• Linewidth (Critical Dimension) Control
• Constant linewidth reduction run to run and across wafer

• Constant linewidth reduction for every material in stack

• Minimal damage to oxide
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Metal Etch Data Set

• Barna, G.G., White, D., Wise, B.M., Gallagher, N.B., Sofge, D., “Development of Robust Fault Detection and
Classification Techniques/SEMATECH J-88E Project at TI”, SEMATECH AEC/APC Workshop VIII, Santa Fe,
New Mexico, Oct. 27-30, 1996.

• White, D., Barna, G.G., Butler, S.W., Wise B., and Gallagher, N., "Methodology for Robust and Sensitive Fault
Detection," Electrochemical Society Meeting, Montreal, May, 1997.

• Gallagher, N.B.,Wise, B.M., Butler, S.W., White, D., and Barna, G.G., "Development and Benchmarking of
Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Improving Robustness Through
Model Updating", IFAC ADCHEM'97, Banff, Canada, 78–83, June, 1997.

• Wise, B.M.,  Gallagher, N.B., Butler, S.W., White, D., and Barna, G.G., "A Comparison of Principal Components
Analysis, Multi-way Principal Components Analysis, Tri-linear Decomposition and Parallel Factor Analysis for
Fault Detection in a Semiconductor Etch Process," J. Chemometr., 13, 379–396 (1999).

• Wise, B.M., Gallagher, N.B., Butler, S.W., White, D., and Barna, G.G., "Development and Benchmarking of
Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Impact of Measurement Selection
and Data Treatment on Sensitivity", IFAC SAFEPROCESS'97, 35–42, Kingston Upon Hull, U.K., Aug., 1997.

• Wise, B.M., Gallagher, N.B., and Martin, E.B., “Application of PARAFAC2 to Fault Detection and Diagnosis in
Semiconductor Etch,” J. Chemometr., 15(4), 285–298 (2001).

• Wise, B.M., Gallagher, N.B., "Multi-way Analysis in Process Monitoring and Modeling," AIChE Symposium Series,
93(316), 271–274 (1997).

• Warren, J. and Gallagher, N.B., “Heuristic and Statistical Methods for Fault Detection: Complementary or
Competing Approaches?”, SEMATECH AEC/APC Symposium XVIII, Westminster, CO, Sept. 30-Oct. 5 (2006).

This data has been used many times and is available at
www.eigenvector.com. A few examples:
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Available Measurements

• Equipment has SECS-II Port

• Provides traces with time stamp and step number

• Regulatory controller setpoints & controlled variable measured values

• gas flows, pressure, plasma powers

• Regulatory controller manipulated variables

• exhaust throttle valve, capacitors

• mass flow controller do not provide valve position

• Additional process measurements

• endpoint intensity (plasma emission at particular frequency)

• impedance measurements

• Optical emission spectra

• RF plasma variables
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Sensitivity of MSPC Models

• Three experiments performed with 21 “induced” faults on:

• TCP top power

• RF bottom power

• Cl2 flow

• BCl3 flow

• Chamber pressure

• Helium chuck pressure

• Goal: Compare ability of models considered for detecting

faults
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Global and Local Models

• Global models based on data over long period of

time with considerable variance due to drift

• Local models build over narrower time windows,

less drift variance
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Generating Faults

• Setpoints were changed for controlled process variables

• Data for the controlled variable was adjusted to have the

original desired mean

• Result is data that looks like a sensor has developed a bias
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Batch Process Monitoring Data

Problem

• Messy-typically includes start-up and shut-down

phases that are not of interest

• Periods of “steady-state” where not much is

changing

• Variable record lengths

• Lots of data!

• Reduce to a set of more compact descriptors?
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Mean of Each Variable over Wafer

Processing Time

• Take mean of each variable

• Pros:

• Easy, conceptually simple

• Large data reduction

• No problem with variable record length

• Cons:

• May miss some types of fault

• Completely lose time information



6

11

Mean Procedure

Can add length of batch variable
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Arrangement of Data for Multiway

Analysis

• Records must be the same length (except PARAFAC2)

• Requires some combination of alignment, truncation or

warping

• Pros

• Retains time information

• Cons

• Results in many variables (parsimony problem)

• Complex preprocessing step, requires interpolation

• Model interpretation issues
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Alignment for Multi-way

Problem: How to do first step?
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Alignment and Warping Methods

• A veritable smorgasbord of methods available

• Dynamic Time Warping (DTW)

• Correlation Optimized Warping (COW)

• Indicator variable/step number

• Linear interpolation

• Align and truncate

• Combinations and variations of the above

• Etc.
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Correlation Optimized Warping

• Piecewise preprocessing method

• Allows limited changes in segment lengths,

controlled by slack parameter

• Linear interpolation over segments

• Dynamic programming used to optimize

correlation between warped sample and reference

• Less flexible than DTW (unless constrained)
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COW References

• N.P.V Nielsen, J.M. Carstensen and J. Smedsgaard, “Aligning of

single and multiple wavelength chromatographic profiles for

chemometric data analysis using correlation optimized warping,” J.

Chromatogr. A, 805, 17-35, 1998.

• G. Tomasi, F. van den Berg and C. Andersson, “Correlation Optimized

Warping and Dynamic Time Warping as Preprocessing Methods for

Chromatographic Data,” J. Chemometrics, 18, 231-241, 2004.

• G. Tomasi, T. Skov and F. van den Berg, Warping Toolbox, see:

http://www.models.life.ku.dk/source/DTW_COW/index.asp
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Example: COW

COW breaks signals into segments and linearly

expands or contracts them to optimize correlation
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Hints on COW

May be better to calculate warp with 2nd derivative

Apply calculated warp to other variables

Calculate warp on PCA scores or other latent variable
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Data Summary Approach

• Convert data into alternate set of descriptors

• If process has multiple steps, calculate parameters

that describe each step
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Summary Variables

• Pros

• Conceptually simple

• Some time information retained

• Noise reduction

• Reduces number of variables (vs. MPCA)

• Cons

• Further from original data

• May not have step numbers to work with
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Summary Variables

Step 1

Step 2

Step 3
Step 1 Step 2 Step 3
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Creation of Pseudo-steps

• Break reference process trace into “sensible”

segments (manually)

• Assign step numbers

• Warp new data onto reference

• Reverse warp reference step numbers into new

data

• Use summary variables
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Example of Step Creation
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Variation in Step Length
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PCA on Summary Variables

26

Loadings for PCA Model
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Compare to MPCA Loadings
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Contribution Plots

Pressure +3

Fault

Pressure -2

Fault
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Results

Faults Caught by PCA on Summary Variables Compared with TLD, PARAFAC, MPCA, PCA on

the Means and PARAFAC2.

TLD PARAFAC MPCA PCA/Means PARAFAC2 Summary

Global 11 12 10 10 7 14

Local 14 17 11 16 13 18

30

He Pressure Fault
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Summary

• Digestion into summary variables creates smaller,

more manageable and interpretable data sets

• Segments can be based on process steps

• Warping techniques such as COW can be used to

create pseudo-steps

• Models based on summary variables at least as

sensitive as MPCA but easier to work with


