How to Swallow a Mouthful of Data
and Avoid Indigestion

Barry M. Wise, Ph.D.
President
Eigenvector Research, Inc.

we= EIGENVECTOR

LILJ RESEARCH INCORPORATED ]

OQutline

The process monitoring data problem
Example data set

Approaches to preprocessing
* Variable means

» Warping for multi-way

» Data summary

Comparison of results

Conclusions

we= EIGENVECTOR

LILJ RESEARCH INCORPORATED 2



Plasma Metal Etch

Resist
TiN

Resist
TiN

TiN

Resist Resist

S00A TiN
) (T 63 q

1000A TiN Etch in
T 1 Cl2/BCI3
L [

Plasma .
Silicon

Silicon

» Linewidth (Critical Dimension) Control
« Constant linewidth reduction run to run and across wafer
¢ Constant linewidth reduction for every material in stack

* Minimal damage to oxide @ EIGENVECTOR
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Metal Etch Data Set

This data has been used many times and is available at
www.eigenvector.com. A few examples:

Barna, G.G., White, D., Wise, B.M., Gallagher, N.B., Sofge, D., “Development of Robust Fault Detection and
Classification TechniquessSEMATECH J-88E Project at TI”, SEMATECH AEC/APC Workshop V111, Santa Fe,
New Mexico, Oct. 27-30, 1996.

White, D., Barna, G.G., Butler, S.W., Wise B., and Gallagher, N., "Methodology for Robust and Sensitive Fault
Detection," Electrochemical Society Meeting, Montreal, May, 1997.

Gallagher, N.B.,Wise, B.M., Butler, S.W., White, D., and Barna, G.G., "Development and Benchmarking of
Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Improving Robustness Through
Model Updating", IFAC ADCHEM'97, Banff, Canada, 78-83, June, 1997.

Wise, B.M., Gallagher, N.B., Butler, S.W., White, D., and Barna, G.G., "A Comparison of Principal Components
Analysis, Multi-way Principal Components Analysis, Tri-linear Decomposition and Parallel Factor Analysis for
Fault Detection in a Semiconductor Etch Process,” J. Chemometr., 13, 379-396 (1999).

Wise, B.M., Gallagher, N.B., Butler, S.W., White, D., and Barna, G.G., "Development and Benchmarking of
Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Impact of Measurement Selection
and Data Treatment on Sensitivity"”, IFAC SAFEPROCESS'97, 35-42, Kingston Upon Hull, U.K., Aug., 1997.
Wise, B.M., Gallagher, N.B., and Martin, E.B., “Application of PARAFAC2 to Fault Detection and Diagnosis in
Semiconductor Etch,” J. Chemometr., 15(4), 285-298 (2001).

Wise, B.M., Gallagher, N.B., "Multi-way Analysis in Process Monitoring and Modeling," AIChE Symposium Series,
93(316), 271-274 (1997).

Warren, J. and Gallagher, N.B., “Heuristic and Statistical Methods for Fault Detection: Complementary or
Competing Approaches?”, SEMATECH AEC/APC Symposium XVIII, Westminster, CO, Sept. 30-Oct. 5 (2006).
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Available Measurements

» Equipment has SECS-I1I Port
¢ Provides traces with time stamp and step number
» Regulatory controller setpoints & controlled variable measured values
¢ gas flows, pressure, plasma powers
* Regulatory controller manipulated variables
¢ exhaust throttle valve, capacitors
¢ mass flow controller do not provide valve position
» Additional process measurements
¢ endpoint intensity (plasma emission at particular frequency)
¢ impedance measurements

. i cal-ormissi
* RFplasmavariables———
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Sensitivity of MSPC Models

» Three experiments performed with 21 “induced” faults on:
» TCP top power
* RF bottom power
» CI2 flow
+ BCI3 flow
» Chamber pressure
» Helium chuck pressure

» Goal: Compare ability of models considered for detecting
faults
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Global and Local Models

Global models based on data over long period of
time with considerable variance due to drift

Local models build over narrower time windows,
less drift variance
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Generating Faults

Setpoints were changed for controlled process variables

Data for the controlled variable was adjusted to have the
original desired mean

Result is data that looks like a sensor has developed a bias
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Batch Process Monitoring Data
Problem

» Messy-typically includes start-up and shut-down
phases that are not of interest

* Periods of “steady-state” where not much is
changing

» Variable record lengths

* Lots of data!

* Reduce to a set of more compact descriptors?
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Mean of Each Variable over Wafer
Processing Time

» Take mean of each variable
* Pros:

 Easy, conceptually simple

 Large data reduction

* No problem with variable record length
» Cons:

* May miss some types of fault

» Completely lose time information
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Mean Procedure

Can add length of batch variable
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Arrangement of Data for Multiway
Analysis

Records must be the same length (except PARAFAC?2)
Requires some combination of alignment, truncation or
warping
Pros

* Retains time information
Cons

* Results in many variables (parsimony problem)

» Complex preprocessing step, requires interpolation

* Model interpretation issues
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Alignment for Multi-way

-

Problem: How to do first step?
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Alignment and Warping Methods

» A veritable smorgasbord of methods available
» Dynamic Time Warping (DTW)
* Correlation Optimized Warping (COW)
* Indicator variable/step number
* Linear interpolation
 Align and truncate
» Combinations and variations of the above
* Etc.

@3 EIGENVECTOR

LAJRESEARCH INCORPORATED 14



Correlation Optimized Warping

Piecewise preprocessing method

Allows limited changes in segment lengths,
controlled by slack parameter

Linear interpolation over segments

Dynamic programming used to optimize
correlation between warped sample and reference
Less flexible than DTW (unless constrained)
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COW References

N.P.V Nielsen, J.M. Carstensen and J. Smedsgaard, “Aligning of
single and multiple wavelength chromatographic profiles for
chemometric data analysis using correlation optimized warping,” J.
Chromatogr. A, 805, 17-35, 1998.

G. Tomasi, F. van den Berg and C. Andersson, “Correlation Optimized
Warping and Dynamic Time Warping as Preprocessing Methods for
Chromatographic Data,” J. Chemometrics, 18, 231-241, 2004.

G. Tomasi, T. Skov and F. van den Berg, Warping Toolbox, see:
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Example: COW

COW breaks signals into segments and linearly
expands or contracts them to optimize correlation

End Point A Before Alignment with COW
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Hints on COW

May be better to calculate warp with 2nd derivative
Apply calculated warp to other variables
Calculate warp on PCA scores or other latent variable

\
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Data Summary Approach

» Convert data into alternate set of descriptors

* If process has multiple steps, calculate parameters
that describe each step
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Summary Variables
* Pros

» Conceptually simple

» Some time information retained

* Noise reduction

» Reduces number of variables (vs. MPCA)
* Cons

 Further from original data

» May not have step numbers to work with
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Summary Variables

Step 1

Step 2

Step 1 Step 2 Step 3

Step 3
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Creation of Pseudo-steps

Break reference process trace into “sensible”
segments (manually)

Assign step numbers
Warp new data onto reference

Reverse warp reference step numbers into new
data

Use summary variables
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Example of Step Creation

Step Segments on Reference Data
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Variation in Step Length

Pseudo-Step Numbers for &)l Wafers
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PCA on Summary Variables
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Loadings for PCA Model

Variables/Loadings Plot for Summary of data
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Compare to MPCA Loadings

Loadings on PC2 (9.18%)
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Contribution Plots
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Summary

Digestion into summary variables creates smaller,
more manageable and interpretable data sets

Segments can be based on process steps

Warping techniques such as COW can be used to
create pseudo-steps

Models based on summary variables at least as
sensitive as MPCA but easier to work with
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