Introduction to Instrument Standardization and Calibration Transfer

Barry M. Wise

Eigenvector Research, Inc. 830 Wapato Lake Road Manson, WA 98831

bmw@eigenvector.com www.eigenvector.com

©Copyright 1996-2000 Eigenvector Research, Inc. No part of this material may be photocopied or reproduced in any form without prior written consent from Eigenvector Research, Inc.

Motivation

- Calibration models for quantitation or classification often take advantage of relatively small changes in spectra
- Instrument to instrument differences can be substantial, *i.e.* samples look different
- ◆ Instruments may drift over time
- Renders models invalid
- Inconvenient to recalibrate instruments or may want to utilize a historical database

Two Main Approaches

- Find a transformation that maps the response of the field instrument onto the standard instrument
 - Direct and piece-wise direct standardization
 - Neural network and other variants
- Process the data from both instruments in a way that makes the differences disappear
 - baselining and derivatizing
 - multiplicative scatter correction, FIR filtering
 - orthogonal signal correction
 - prediction augmented classical least squares
 - ◆ generalized least squares
 - explicit deresolution

Piece-wise Direct Standardization (PDS)

 Develop models which use windows on field instrument to predict single channels on standard

Develop Transfer Matrix Fb

Difference between instruments modelled as: $\mathbf{S}_1 = \mathbf{S}_2 \mathbf{F}_b + \mathbf{1} \mathbf{b}_s^{\mathrm{T}}$

Data Arrangement for PDS

Data Arrangement for Double Window PDS

Direct Standardization

• Similar to PDS except $\mathbf{F}_{\mathbf{b}}$ matrix is full:

 $\mathbf{F}_b = \mathbf{S}_2 + \mathbf{S}_1$

♦ Many more parameters in DS compared to PDS

Variations on PDS

- ♦ Single model PDS
 - widen second window in DWPDS until it is the width of the entire spectrum
 - model is the same for each channel in master instrument
 - transfer function not a function of wavelength
- ◆ Single model PDS with index
 - include the channel number as the parameter in the model
 - use non-linear model such as ANN
 - transfer function is a function of wavelength

Orthogonal Signal Correction

- ♦ OSC attempts to remove extraneous variation unrelated to the property of interest from the predictor variables
- Principal components are calculated for the predictor variables then orthogonalized against the variable(s) to be predicted
- Weighting vectors are determined with PLS which reproduce the orthogonal directions on new data
- To use in standardization, apply to data measured on both instruments

Example From NIR, Pseudo Gasoline Mixtures

Difference Between Instruments

Instrument 1 Calibration

After Standardization

Instrument 1 Calibration on Unstandardized Instrument 2

Instrument 1 Calibration on Standardized Instrument 2

Prediction Augmented Classical Least Squares

- ◆ If CLS is used for predictive model, new spectra can be added to prediction step to account for differences between instrument
- Augmented spectra can include known new components or estimates of changes such as a baseline offset or mean difference
- Eigenvectors of difference matrices can also be included

CLS: Predictions on Instrument 2 with Instrument 1 Spectra

Estimated Pure Component Spectra and Additional Factors

PA-CLS Predictions

NIR of Corn Samples

Calibration

Difference Before and After Standardization

Effect of OSC on Spectra

Results of Corn Standardization

Summary

<u>Method</u> Direct PDS NN-PDS	<u>Transforms?</u> Yes Yes Yes	<u>Standards</u> Real Anything Anything	Parameters Lots Few Moderate	Uses Y No No No	<u>Comments</u> Many samples Few samples Non-linear
Derivative	No	None	None	No	Easy
MSC	Yes	Real, Few	Few	No	Easy
OSC	No	Real	Few	Yes	Requires Y
PA-CLS	No	Anything?	Few	No	Interpretable
GLS	No	Real	Moderate	No	New
Deresoluti	on No	None	Few	No	FTIR

Conclusions

- ♦ PDS still the method to "shoot for"
- •DS more sensitive to number of transfer samples
- ♦ OSC produces especially good results in some data, also useful as a preprocessing technique
- ♦ FIR not adequate in situations we've seen

PLS_Toolbox 2.0 for use with MATLAB

- Version 2.0 for MATLAB 5 now available
- Wide selection of multivariate analysis tools
- Used in our Chemometrics Short Courses

PLS_Toolbox 2.0

for use with MATLABTM

Barry M. Wise Neal B. Gallagher