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Abstract: Multivariate Statistical Process Control (MSPC) tools have been developed
for monitoring a Lam 9600 TCP Metal Etcher at Texas Instruments. These tools are
used to determine if the etch process is operating normally or if a system fault has
occurred. Application of these methods is complicated because the etch process data
exhibits a large amount of normal systematic variation. Variations due to faults of
process concern can be relatively minor in comparison. The Lam 9600 used in this
study is equipped with several sensor systems including engineering variables (e.g.
pressure, gas flow rates and power), spatially resolved Optical Emission Spectroscopy
(OES) of the plasma and a Radio Frequency Monitoring (RFM) system to monitor the
power and phase relationships of the plasma generator. A variety of analysis methods
and data preprocessing techniques have been tested for their sensitivity to specific
system faults. These methods have been applied to data from each of the sensor
systems separately and in combination. The performance of the methods on a set of
benchmark fault detection problems will be presented and the strengths and weaknesses
of the methods will be discussed, along with the relative advantages of each of the
sensor systems.
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Principal Components Analysis, Multi-way Principal Components Analysis

1. INTRODUCTION

Semiconductor processes, like many chemical
processes, are becoming more measurement rich all
the time. A wide variety of sensors and sensor
systems are available. The goal of adding sensors, of
course, is to reduce costs and/or improve the final
product quality through improved process control or
fault detection. Often, however, it is not apparent
what sensors will be useful in meeting these goals. In
order for sensors to be useful, they must be sensitive
to variations in the process and be stable enough to
provide information over extended time periods. In
addition, the method used to treat the process data
must be specified, as they can also impact sensitivity
and robustness performance.

Recently, “chemometric techniques” have been
applied to process (as opposed to analytical
chemistry) problems. These applications can be
roughly divided between those directed at
maintenance of process instruments, e.g. calibration,
and those that are concerned with maintenance of the
process itself, e.g. statistical process control and fault
detection. Our focus will be on the latter area. In this
paper, we describe a study performed on a Lam 9600
metal etcher to determine which of three sensor
systems, alone and in combination, and what data
treatment method is the most sensitive to a series of
known faults. One of the most often used
chemometric techniques, Principal Components
Analysis (PCA) will be reviewed, along with a more
recent adaptation of the method, Multi-way PCA. The



issue of robustness of the sensors and methods over
long periods will be discussed in a companion article.

2. THE METAL ETCH PROCESS

There are many steps in the manufacture of
semiconductors. This project was focused on an Al-
stack etch process performed on the commercially
available Lam 9600 plasma etch tool. The goal of this
process is to etch the TiN/Al - 0.5% Cu/TiN/oxide
stack with an inductively coupled BCl3/Cl2 plasma.
The key parameters of interest are the line width of
the etched Al line (specifically the line width
reduction in relation to the incoming resist line
width), uniformity across the wafer and the oxide loss.

The standard recipe for the process consists of a series
of six steps. The first two are for gas flow and
pressure stabilization. Step 3 is a brief plasma ignition
step. Step 4 is the main etch of the Al layer
terminating at the Al endpoint, with Step 5 acting as
the over-etch for the underlying TiN and oxide layers.
Note that this is a single chemistry etch process, i.e.
the process chemistry is identical during steps 3
through 5. Step 6 vents the chamber. The process
"profile" as indicated the by the Endpoint A signal
(the plasma emission intensity from as measured by a
filter spectrometer) is shown in Figure 1 of Gallagher
et. al. (1997). The stabilization step is followed by the
three etch regions: Al, TiN and oxide etch.

3. PROCESS SENSORS

Sensor selection is a primary consideration when
planning a fault detection and classification (FDC)
system. In the etch process, it would be ideal to have
sensors which directly reflected the state of the wafers
in the process. However, with a few exceptions, wafer
state sensors are typically unavailable in original
equipment manufacturer (OEM) processing tools.
Thus, the alternative is to select more commonly
available process state sensors, with the understanding
that wafer state information will have to be inferred.

The metal etcher used for this study was equipped
with 3 sensor systems: machine state, Radio
Frequency Monitors (RFM), and Optical Emission
Spectroscopy (OES). The machine state sensors, built
into the processing tool, collect the available machine
data during wafer processing. The machine data
consists of 40 process setpoints and measured and
controlled variables sampled at 1 second intervals
during the etch. These are engineering variables, such
as gas flow rates, chamber pressure and RF power. In
this work, non-setpoint process variables with some
normal variation were used for monitoring, as shown
in Table 1. Also, the physics of the problem suggest
that these variables should be relevant to process and
final product state.

The RFM sensors measure the voltage, current and
phase relationships at the fundamental frequency of
13.56 MHz and the next four harmonics at four
locations in the RF control system. The resulting 70

values are sampled every 3 seconds. The OES is used
to monitor the plasma in the range of 245 to 800 nm
in three locations above the wafer. The original data
consists of 2042 channels per location, however, in
this work the data was preprocessed by integrating a
much smaller number of peaks (40) in each of the
three spectra which correspond to process gases and
species evolving from the wafer due to the etch.

Table 1. Machine State Variables Used for Process
Monitoring

1 BCl3 Flow 11 RF Power
2 Cl2 Flow 12 RF Impedance
3 RF Bottom Power 13 TCP Tuner
4 RFB Reflected Power14 TCP Phase Error
5 Endpoint A Detector 15 TCP Impedance
6 Helium Pressure 16 TCP Top Power
7 Chamber Pressure 17 TCP Reflected Power
8 RF Tuner 18 TCP Load
9 RF Load 19 Vat Valve

10 Phase Error

A major objective of this work was to determine
which sensors, or combinations of sensors, are most
useful for detecting process faults. Data from the three
sensors systems was used to develop models of the
process in a variety of ways and the ability of the
models to detect faults was tested.

4. PROCESS SHIFTS AND DRIFT

Ideally, under normal conditions, a process would be
stationary, i.e. retain the same mean and covariance
structure over time. Unfortunately, measurements
from the etch process are clearly non-stationary.
Changes in the data are primarily due to three sources,
aging of the etcher over a clean cycle as residue
accumulates on the inside of the chamber, differences
in the incoming materials due to changes in upstream
processes, and drift in the process monitoring sensors
themselves. In addition, process maintenance can
result in sudden shifts in the mean. The result is that it
is normal for the process data to show considerable
variation over time. This variation is often much
larger than changes due to actual process faults.
Process means, however, normally show more erratic
behavior than the process covariance, i.e. how the
process variables covary .

5. DATA TREATMENT

Chemical and manufacturing processes are becoming
more heavily instrumented and the data is recorded
more frequently. This is creating a data overload, and
the result is that a good deal of the data is “wasted,”
i.e. no useful information is obtained from it. The
problem is one of both compression and extraction.
Generally, there is a great deal of correlated or
redundant information provided by process sensors.
This information must be compressed in a manner that
retains the essential information and is more easily
displayed than each of the process variables
individually. Also, often essential information lies not



in any individual process variable but in how the
variables change with respect to one another, i.e. how
they covary. In this case the information must be
extracted from the data. Furthermore, in the presence
of large amounts of noise, it would be desirable to
take advantage of some sort of signal averaging.

5.1 Principal Components Analysis

Principal Components Analysis (PCA) is a favorite
tool of chemometricians for data compression and
information extraction (Jackson, 1991; Wise and
Kowalski, 1995a; Wise et. al. 1996; Wold, et. a l.
1987a). PCA finds combinations of variables or
factors that describe major trends in a data set.
Mathematically, PCA relies on an eigenvector
decomposition of the covariance or correlation matrix
of the process variables. In this work we will use the
convention that rows of a data matrix X correspond to
samples while columns correspond to variables. For a
given data matrix X with m rows and n columns the
covariance matrix of X is defined as

cov(X) = X
TX

m - 1
(1)

This assumes that the columns of X have been “mean
centered,” i.e. adjusted to have a zero mean by
subtracting off the mean of each column. If the
columns of X have been “autoscaled,” i.e. adjusted to
zero mean and unit variance by dividing each column
by its standard deviation, Equation 1 gives the
correlation matrix of X. (Unless otherwise noted, it is
assumed that data is either mean centered or
autoscaled prior to analysis.) PCA decomposes the
data matrix X  as the sum of the outer product of
vectors t i  and pi  plus a residual matrix E:

X =  t1pT1 + t2pT2 + ... + tkpTk + E (2)

Here k must be less than or equal to the smaller
dimension of X, i.e. k ≤ min{m,n}. The ti  vectors are
known as scores and contain information on how the
samples relate to each other. The pi  vectors are
eigenvectors of the covariance matrix, i.e. for each pi

cov(X)pi   = λ i  pi  (3)

where λi is the eigenvalue associated with the
eigenvector pi . In PCA the pi are known as loadings
and contain information on how variables relate to
each other. The ti form an orthogonal set (tiTtj = 0 for
i ≠j), while the pi  are orthonormal (piTpj  = 0 for i ≠j ,
piTpj  = 1 for i =j ). Note that for X and any ti, pi pair

Xp i  = ti (4)

This is because the score vector t i  is the linear
combination of the original X data defined by pi. The
ti, pi pairs are arranged in descending ordered
according to the associated λi . The λi are a measure of
the amount of variance described by the t i, pi  pair. In

this context, we can think of variance as information.
Because the ti, pi pairs are in descending order of λi,
the first pair capture the largest amount of information
of any pair in the decomposition. In fact, it can be
shown that the t1, p1 pair capture the greatest amount
of variation in the data that it is possible to capture
with a linear factor. Subsequent pairs capture the
greatest possible variance remaining at that step.

The concept of principal components is shown
graphically in Figure 1. The figure shows a three
dimensional data set where the data lie primarily in a
plane, thus the data is well described by a two
principal component (PC) model. The first
eigenvector or PC aligns with the greatest variation in
the data while the second PC aligns with the greatest
amount of variation that is orthogonal to the first PC.
Generally it is found that the data can be adequately
described using far fewer principal components than
original variables.
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Fig. 1. Principal Component Model of Three
Dimensional Data Set Lying Primarily in a
Single Plane Showing Q and T2 Outliers.

It is also possible to calculate a lack of model fit
statistic, Q, for each sample. Q is simply the sum of
squares of each row (sample) of E (from Equation 2),
for example, for the ith sample in X, xi :

Qi = eieiT = xi (I  - PkPkT)xiT (5)

where ei  is the ith row of E, Pk is the matrix of the
first k  loadings vectors retained in the PCA model
(where each vector is a column of Pk) and I  is the
identity matrix of appropriate size (n by n). The Q
statistic indicates how well each sample conforms to
the PCA model. It is a measure of the amount of
variation in each sample not captured by the k
principal components retained in the model.

A measure of the variation within the PCA model is
given by Hotelling’s T2 statistic. T2 is the sum of
normalized squared scores defined as

Ti2 = tiλ-1tiT = xiPλ-1PTxiT (6)

where ti in this instance refers to the ith row of Tk, the
matrix of k  scores vectors from the PCA model. The



matrix λ -1 is a diagonal matrix containing the inverse
eigenvalues associated with the k  eigenvectors
(principal components) retained in the model.
Statistical limits can be developed for Q and T2,
(along with limits on the scores and individual
residuals).

5.2 Applying an Existing PCA Model: MSPC

Once a PCA model has been developed (including
mean and variance scaling vectors, eigenvalues,
loadings, statistical limits on the scores, Q and T2) it
can be used with new process data to detect changes
in the system generating the data. The scores for new
data t i, new, can be obtained for new data Xnew with
Equation 4 using the original loadings vectors, pi . In a
similar fashion, new Q and T2 can be obtained with
Equations 5 and 6 by substituting xi,new for xi. When
one monitors these values as the process proceeds, the
result is multivariate statistical process control
(MSPC) (Wise and MacMakin, 1987; Wise et. a l.
1988, 1990, 1991; Wise and Ricker, 1989; Kresta et.
al. 1991).

In this work we will use primarily Q and T2 for
detecting system faults. Some discussion of the
geometric interpretation of Q and T2 is perhaps in
order. As noted above, Q is a measure of the variation
of the data outside of the PCA model. Refer again to
our 3 variable where the data is restricted to lie on a
plane shown in Figure 1. Such a system would be well
described by a 2 PC model. Q is a measure of the
distance off the plane formed by the first 2 PCs. In
fact Q is the Euclidean distance of the operating
point from the plane formed by the 2 PC model. A
point with an unusually large Q value is depicted in
Figure 1. The Q limit defines a distance off the plane
that is considered unusual for normal operating
conditions. T2, on the other hand, is a measure of the
distance from the multivariate mean to the projection
of the operating point onto the 2 PCs. The T2 limit
defines an ellipse on the plane within which the
operating point normally projects. Again, Figure 1
shows a point with a high T2 value.

5.3 Multi-Way PCA

The PCA method outlined above take no explicit
account of the ordered nature of a data set, i.e. the fact
that the data was collected in a sequential manner.
Reordering the samples in PCA would produce
identical results. There are methods that explicitly
consider that the data is ordered. These are referred to
as multi-way methods because the data is usually
organized into time ordered blocks that are each
representative of a single sample or process run. The
blocks are then arranged into multi-way matrices.
Multi-way methods are particularly useful for the
analysis of batch process data.

Consider the three dimensional data array shown in
Figure 2. A data matrix of this type would be typical
of a series of runs of a batch process such as our
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Fig. 2. Three Dimensional Data Array and Multi-way
PCA Decomposition.

example of semiconductor processing where each
“batch” is a wafer. Here there are j  = 1, 2, ..., J
variables measured at times k = 1, 2, ..., K throughout
the batch. Similar data will exist on i = 1, 2, ..., I runs
of the batch process. The data can be summarized in
the three dimensional (I x J x K) array X. Different
batch runs (samples) are arranged along the vertical
side, different process measurements (variables) along
the horizontal side, and time recedes into the figure.
Each horizontal slice through the array is a (J x K)
matrix representing the time history for all variables
of a batch of a particular batch or sample. Each
vertical slice made parallel to the front face of the
cube is a (I x J) matrix representing the values of all
the variables in all the batches taken at a common
time. A vertical slice made parallel to the side of the
cube (the time axis) would represent a (I x K) matrix
of all the time histories of a single variable for all the
batches.

There are several methods for decomposing the array
X (Geladi, 1989). These methods include the tri-linear
decomposition (TLD) (Sanchez and Kowalski, 1990),
parallel factor analysis (PARAFAC) (Smilde and
Doornbos, 1991), and Tucker models (Smilde et. al.,
1994). In this work, we will consider one of the more
straightforward approaches, that of multi-way PCA
(MPCA) (Wold et. al., 1987b). Each of the
decomposition methods place different constraints on
the resulting matrices and vectors.

MPCA is statistically and algorithmically consistent
with PCA and has the same goals and benefits
(Nomikos and MacGregor, 1994, 1995). In MPCA the
array X  is decomposed as the summation of the
product of score vectors (t) and loading matrices (P)
plus a residual array E that is minimized in a least
squares sense.



X = tr⊗ Pr + E∑
r = 1

R

(7)

This decomposition is shown graphically in Figure 4.
This decomposition is done in accordance with the
principles of PCA and separates the data in an optimal
way into two parts. The noise or residual part E is as
small as possible and is associated with non-
deterministic variation in the data. The systematic
part, the sum of the tr⊗ Pr, expresses the deterministic
variation as one fraction (t ) related only to batches
and a second fraction (P) related to variables and their
time variation.

MPCA is equivalent to performing PCA on a large
two-dimensional matrix formed by unfolding the
three-way array X  in one of six possible ways, only
three of which are mathematically unique. For
example, one might unfold X  in such a way as to put
each of its vertical slices (I x J) side by side to the
right, starting with the slice corresponding to the first
time interval. The resulting two dimensional matrix
has dimensions (I x JK). This particular unfolding
allows one to analyze variability among the batches in
X  by summarizing information in the data with
respect to variables and their time variation. A
mathematically equivalent unfolding would be to take
slices off the side of X and place them down the time
axis, which also forms a matrix with dimensions (I x
JK). (The latter unfolding orders the matrix with the
history of each variable kept together while the former
orders the matrix with the all the measurements taken
at the same time kept together.) One might also be
interested in unfolding X in other ways, however, the
unfolding discussed above (and its mathematical
equivalent) are the only ways that keep batch (sample)
specific information separate from time and variable
information.

The MPCA algorithm proceeds as shown in follows.
First the matrix is unfolded in one of the two
equivalent ways described above. Each column of the
resulting matrix is then mean centered and, if
appropriate, scaled to unit variance (autoscaled). An
eigenvector decomposition as described in Equations
1 to 3 is then applied to the unfolded X. Each of the p,
however, is really an unfolded version of the loadings
matrix Pr. After the p are obtained, the Pr can be
obtained by reversing the unfolding procedure. In a
similar manner, the three way array E can be formed
by folding the PCA residual matrix E. The Q and T2

statistics can be calculated using the unfolded solution
as shown in Equations 5 and 6.

This version of MPCA explains variation of measured
variables about their average trajectories. Subtracting
the average trajectory from each variable
(accomplished by mean centering the columns of the
unfolded matrix X ) removes the major nonlinear
behavior of the process. The i th elements of the t-
score vectors correspond to the ith batch (sample) and
summarize the overall variation in this batch with
respect to the other batches in the database over the

entire history of the batch. The P loading matrices
summarize the time variation of the measured
variables about their average trajectories. The
elements of P are the weights, which when applied to
each variable at each time interval within a batch, give
the t scores for that batch. Additional examples of
MPCA for MSPC can be found in Kosanovich et. al.
1994; Gallagher et. al. 1996, Wise and Gallagher,
1996).

5.4 Data Preprocessing

Before applying PCA or MPCA, several options are
available for preprocessing the data. In PCA, one
would often simply determine a single mean and
variance for scaling the data and apply this scaling to
all additional data. In our current example, however, it
is known that process drift occurs, and that the
process mean may shift. Thus, one might consider
mean centering the data from each wafer in order to
eliminate the effect of drift. It might also be possible
to continually rebuild PCA models so that they are
based only on recent data. (This approach is discussed
at length in a companion paper).

An additional complication involves stretching of the
time axis in the data record. In the etch process,
timeline stretching causes blocks of data from each
wafer to have different numbers of samples. This is
due to differing lengths of the etch because of changes
in layer thickness. One way to approach this is to
simply average the data from each wafer over all
available samples and work with only a mean.
Another approach would be to select a specified
number of samples where some point in the selected
record corresponds to some particular process event.
In related work, we have also used speech recognition
methods such as Dynamic Time Warping to map the
process response back onto a reference trace.

As will be seen in the following sections, the data
pretreatment method can have a significant impact on
the overall sensitivity and robustness of the method.

6. INDUCED FAULT EXPERIMENTS

A series of three experiments (EXP-29, 31 and 33)
were performed where faults were intentionally
induced by changing the TCP power, RF power,
pressure, Cl2 or BCl3 flow rate, and He chuck
pressure. These three experiments consisted of a total
of 129 wafers with 21 faults.

To make the test more representative of an actual
sensor failure, the analysis was done with “reset”
values: values for the controlled variable which was
intentionally moved off its setpoint was reset to have
the same mean as its normal baseline value, i.e. the
controlled variable which was changed was reset to
look normal in the data file. For example, if the
induced fault was a change of the TCP power from
350 to 400 watts, the data file value of the TCP power
was reset from a mean of 400 back to 350 by addition
of a constant bias. The resulting data looks as if the



controller was seeing a biased sensor for TCP power
and adjusting accordingly: TCP power would appear
normal, but it would not be. The effect of a TCP
power offset, however, should be evident (we hope) in
the remaining process variables because the apparent
relationship between the TCP power and the
remaining variables should be different.

The three induced fault experiments were run at
widely spaced intervals (in February, March and April
1996, respectively). Process drift is apparent in the
data: each experiment has a significantly different
multivariate mean. This is evident in Figure 3, which
shows the scores on the first two PCs of the machine
state data for all three experiments. The data clearly
splits into three groups, one for each of the
experiments. This suggests that models based on all of
the data will define a much larger region of the
multivariate space as normal variation than would a
model of a single experiment. We will refer to a
model of all of the data as a global model, and a
model of each of the lots as a local model.
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7. RESULTS

Data from experiments 29, 31 and 33 was used to test
the sensitivity of PCA and MPCA for detecting the
induced faults. Machine state, RFM and OES data
was available for each of these experiments. As
described above, these experiments included some
wafers where the setpoints for some variables were
offset from the normal recipe. Prior to the analysis,
the data from the sensors that measure each of these
parameters (and is used for feedback control) were
“reset” to their means from previous runs. All
subsequent analysis was performed using the
PLS_Toolbox software (Wise and Gallagher, 1995)

Several different approaches were used in the
development of the fault detection models used in this
test. In order to get a direct comparison of the
sensitivity of the process sensors, only data from these
experiments was used in model development (very
little additional data exists where all 3 sensor systems
are available). Models were developed that were

intended to mimic the local and global behavior of the
process. Local models were built using only data from
a particular experiment, i.e. a model was built using
data from the normal wafers from an experiment and
was used to test the remaining wafers. The local
models were intended to represent the upper limit of
what might be achievable with models that update
themselves continuously and thus are always local.
Global models were developed using the normal
wafers from all of the experiments simultaneously and
then tested on the fault wafers. This represent the case
where models span a large amount of process
variation, i.e. include lot-to-lot and over a
maintenance cycle type effects. These models
included a larger amount of variation as normal than
the local models.

The data was also preprocessed in a number of
different ways prior to analysis. For some tests, the
data from each wafer was reduced to a single vector
of means of the variables over the entire wafer. In
other cases, raw data was used for model
development. Analysis was also performed using raw
data where the data from each of the wafers was
centered to its own mean. Multi-way analysis was
also performed. In these instances each sample in the
analysis includes the time history of the process
sensors. As described above, the same number of
samples were used for each wafer during model
development and testing. For machine state data, 70
samples were used, including the last 25 data points
from step 4 and the first 45 data points for step 5.
Similarly, 25 and 28 data samples were used from the
RFM and OES, respectively. RFM and OES variables
that mirrored the process end point trace were found,
and a consistent number of samples were selected on
either side of the peak of the TiN etch.

The sensitivity results for the machine state, RFM and
OES sensors used individually are shown in Table 2.
The results for the sensors in combination are shown
in Table 3. The faults are listed down the side of each
table. Note that only faults where all data was
available are considered in the table; thus, there are 19
faults listed rather than the original 21. The results for
straight PCA models are shown on the left, for 5
different data pretreatment approaches. MPCA model
results are shown on the right for 3 different data
pretreatment approaches. Six different combinations
of sensors are considered for each
method/preprocessing combination: machine state,
RFM, OES (Table 2), machine state + RFM + OES,
machine state + RFM and machine state + OES
(Table 3). A symbol in the body of the table indicates
that the particular combination of data analysis
method, pretreatment and sensors caught the
particular fault. An open symbol indicates that the
fault exceeded the 99% confidence limit, while a
filled in symbol indicates that the fault exceeded the
99% limit by a factor of 5 or more. Note, however,
that for analysis of the raw data, an open symbol
indicates that more than 15% of the samples exceeded
the 95% confidence limit, while a filled symbol
indicates that over 30% of the samples exceeded the
95% confidence limit. Also, sensors were not



considered in combination using the raw data since
the data acquisition times are not synchronized
between the sensors.

Table 2. Results of Sensitivity Tests for Single Sensor
Systems.

Straight PCA MPCA

Exp
Induced 
Fault

Global 
on 

Means

Local 
on 

Means

Global 
on 

Raw 
Data

Local 
on 

Raw 
Data

Global 
on MC 
Data Global Local

Global 
on MC 
Data

29  TCP +50 ❍  ✙ ●  ✚ ❍  ✚ ❍  ✚   ✙   ✙ ❍  ✙    

29  RF +10   ■  ❍ ■   ■  ❍ ■   ■   ■   ■   ❏  

29  Pr +3   ● ■ ✙ ● ■ ✚ ● ■ ✚ ● ■ ✙ ❍  ✙ ❍ ❏ ✙ ● ❏ ✚ ❍  ✙

29  TCP +10    ❍        ✙   ✚          

29  BCl3 +5  ■  ❍ ■   ■ ✙  ■ ✙   ✙  ❏   ❏     

29  Pr -2   ●  ✙ ●  ✙ ●  ✙ ● ■ ✙   ✙ ❍   ●  ✙ ❍   

29  Cl2 -5     ● ❏   ❏   ❏   ❏   ❏   ❏     

29  He Chuck                         

31  TCP +30 ❍ ■ ✙ ● ■ ✚ ❍ ■ ✙ ❍ ■ ✚  ■ ✙ ❍ ■ ✙ ❍ ■ ✙  ❏  

31  Cl2 +5       ✙  ❏ ✙   ✙  ❏ ✙          

31  BCl3 -5      ✙ ● ❏  ●   ● ❏ ✙ ●   ●   ●   

31  Pr +2   ● ❏ ✙ ● ■ ✚ ● ❏ ✙ ● ❏ ✙  ❏ ✙ ❍ ❏ ✙ ❍ ❏ ✙ ❍  ✙

31  TCP -20 ❍ ■  ● ■ ✙  ■ ✙ ❍ ■ ✙     ■   ■     

33  TCP -15  ■  ❍ ■ ✙  ■   ■   ❏   ■   ■     

33  Cl2 -10 ❍   ❍ ❏ ✙         ✙          

33  RF -12  ❍ ■  ❍ ■   ■ ✙  ■ ✙     ❏   ❏     

33  BCl3 +10 ❍   ❍  ✙ ❍ ❏  ❍ ❏  ❍ ❏  ❍   ❍      

33  Pr +1   ❍   ● ■ ✙ ❍   ❍ ❏    ✙    ❍ ❏     

33  TCP +20  ■  ❍ ■ ✙  ■ ✙ ❍ ■ ✙    ■   ■     

Total 10 9 5 16 12 13 8 13 10 11 13 11 3 8 11 6 10 4 9 11 5 4 2 2

Column 1: Machine State;

Column 2: RF Sensors;
Column 3: OES;

fault = over 99% limit
FAULT = 5x over 99% limit

Table 3. Results of Sensitivity Tests for Combinations
of Sensor Systems.

Straight PCA MPCA

Exp
Induced 
Fault

Global 
on 

Means

Local 
on 

Means

Global 
on 

Raw 
Data

Local 
on 

Raw 
Data

Global 
on MC 
Data Global Local

Global 
on MC 
Data

29  TCP +50 ❍ ❏ ✙ ● ■ ✚         ❍  ✙ ❍  ✙    

29  RF +10  ● ■  ● ■           ● ■  ● ■  ❍ ■  

29  Pr +3   ❍ ■ ✙ ● ■ ✚          ❍ ❏ ✙ ❍ ❏ ✙ ❍ ❏ ✙

29  TCP +10    ❍ ❏ ✙                   

29  BCl3 +5 ❍ ❏  ❍ ■            ❏  ❍ ❏     

29  Pr -2   ❍ ❏ ✙ ● ■ ✚          ❍ ❏ ✙ ❍ ❏ ✙    

29  Cl2 -5   ❏  ❍ ■ ✙              ❏     

29  He Chuck                         

31  TCP +30 ● ■ ✙ ● ■ ✚          ❍ ❏ ✙ ❍ ■ ✙ ❍ ❏  

31  Cl2 +5       ✙                   

31  BCl3 -5    ❍  ✙          ● ■ ✚ ● ■ ✚ ● ■ ✚

31  Pr +2   ❍ ❏ ✙ ● ■ ✚          ❍ ❏ ✙ ❍ ❏ ✙ ❍ ❏ ✙

31  TCP -20 ● ■  ● ■ ✙          ❍ ❏  ❍ ❏     

33  TCP -15 ● ■  ● ■ ✙          ❍ ❏  ❍ ❏     

33  Cl2 -10  ❏  ❍ ❏ ✙                   

33  RF -12  ❍ ❏  ❍ ■ ✙              ❏     

33  BCl3 +10  ❏  ❍ ❏ ✙           ❏   ❏     

33  Pr +1    ❏  ❍ ■ ✙              ❏     

33  TCP +20 ● ■  ● ■ ✙          ❍ ❏  ❍ ❏     

Total 11 15 5 17 16 16 10 11 6 11 14 6 5 5 3

Column 1: Machine State + RF +OES;
Column 2: Machine State + RFM;

Column 3: Machine State + OES;
fault = over 99% limit

FAULT = 5x over 99% limit

7. DISCUSSION

Several trends are evident upon examination of the
results. It is clear that local models out-perform global
models. In Tables 2 and 3 all local models performed
better than all similarly configured global models.
This is expected because global models include a
larger amount of variation as normal. Thus, faults are

smaller relative to the normal variation included in
global models and are therefore more difficult to
detect. PCA on the wafer means is somewhat more
sensitive than PCA on raw data for machine state data
but not for RFM and OES. The increased sensitivity
with machine data, which tends to have a larger
proportion of unmodeled variance, is probably signal
averaging, i.e. it is easier to see a shift in the mean
when signals are averaged over many samples. With
OES and RFM data there is generally very little
unmodeled variance in the raw data, and changes are
more easily detected in the raw data.

In this analysis, MPCA does not perform better than
PCA of the raw data. However, in previous analyses,
with different arrangements of the data, MPCA did
perform better on the machine state and OES sensors,
but not the RFM. It is expected that MPCA will be
more sensitive to some types of faults than PCA
because the time-ordered nature of the data is
considered explicitly. Faults which change the shape
of the process trajectory, but not the overall mean and
covariance, would be detectable with MPCA but not
with PCA. Changes in shape can include stretching
due to lengthening or shortening of some periods of
the etch. In previous analysis, data was arranged for
MPCA by including a specified number of samples
starting from the beginning of the run, as opposed to
including data centered on a particular feature near the
middle of the run. MPCA models are more sensitive
to stretching when the starting points are fixed in the
data record, rather than a point near the center. It is
not clear why MPCA does not lead to increased
sensitivity when used with the RFM data. It may be
that the shape of the RFM trajectories are inherently
more variable, making changes to them harder to
detect.

Methods based on wafers centered to their own mean
are less sensitive that those based on raw data, as
might be expected. However, there are several
instances where the analysis on mean centered wafers
detects faults where analysis of the means does not.
This suggests that these techniques could be used
simultaneously.

The overall performance of the different sensors is
approximately equal, however, the OES sensor
appears to degrade the most as the models are
changed from local to global. This is no doubt due to
the vary large amount of drift in the OES signals over
the course of a clean cycle due to residue buildup on
the chamber window. The sensitivity of RFM models,
on the other hand, changed little when they were local
or global. This suggest that the RFM sensors are the
most stable, and/or least sensitive to lot-to-lot changes
that do not affect processing.

The best combination of sensors is machine state plus
RFM. This combination is more successful for
detecting faults than any of the sensors alone or in
combination when global models are considered.
When OES data is combined with machine state and
RFM data, the ability to detect faults generally
decreases in the global models. This is not necessarily



true for local models where long-term variation in the
OES is not important.

8. CONCLUSIONS

This study has shown how one can systematically step
through the options for sensor systems and data
treatment for fault detection systems in order to select
the best measurements and analysis method for the
particular job. For this particular application, simpler
methods, such as PCA on the means, tended to work
best. The major unresolved issue in this article
concerns dealing with process and sensor drift. It is
apparent that this had a major impact in this study.
This issue is the subject of our companion article.
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