Correction of systematic disturbances in latent-variable calibration models

Paman Gujral, Michael Amrhein, Barry M. Wise, Enrique Guzman, Davyd Chivala and Dominique Bonvin

Laboratoire d'Automatique Ecole Polytechnique Fédérale de Lausanne

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Introduction

- Calibration and prediction
- Constituents of prediction error
- Unifying framework for different correction methodologies

Illustrative examples

- Simulation example
- Two real data examples

BackgroundCalibration: $\{\mathbf{X}_c, \mathbf{y}_c\} \rightarrow \hat{\mathbf{b}}$ Prediction: $\hat{\mathbf{y}}_p = \mathbf{X}_p \hat{\mathbf{b}}$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

BackgroundCalibration: $\{\mathbf{X}_c, \mathbf{y}_c\} \rightarrow \hat{\mathbf{b}}$ Prediction: $\hat{\mathbf{y}}_p = \mathbf{X}_p \hat{\mathbf{b}}$

 $\mathbf{x}_{c}^{\mathrm{T}} = y_{c}\mathbf{s}^{\mathrm{T}} + (\text{spectra from other species}) + \text{noise}_{c}$

Gujral (LA-EPFL)

・ロト ・ 四ト ・ ヨト ・ ヨト

Background

 ${\sf Calibration:} \quad \{{\sf X}_c,{\sf y}_c\} \to \hat{\sf b}$

Prediction:
$$\hat{\mathbf{y}}_p = \mathbf{X}_p \hat{\mathbf{b}}$$

$$\mathbf{x}_{c}^{\mathrm{\scriptscriptstyle T}} = y_{c} \mathbf{s}^{\mathrm{\scriptscriptstyle T}} + (\text{spectra from other species}) + \text{noise}_{c}$$

but

$$\mathbf{x}_{p}^{\mathrm{T}} = y_{p}\mathbf{s}^{\mathrm{T}} + (\text{spectra from other species}) + \mathbf{d}^{\mathrm{T}} + \text{noise}_{p}$$

・ロト ・聞ト ・ヨト ・ヨト

$$\hat{y}_{\rho} = \mathbf{x}_{\rho}^{\mathrm{T}} \hat{\mathbf{b}}$$

$$= (y_{\rho} \mathbf{s}^{\mathrm{T}} + \text{spectra from other species}) \hat{\mathbf{b}} + \mathbf{d}^{\mathrm{T}} \hat{\mathbf{b}} + (\text{noise}) \hat{\mathbf{b}}$$

Prediction error $(y_p - \hat{y}_p)$ has three constituents:

- due to noise (variance)
- due to systematic disturbance (bias)
- due to the PCR/PLSR modeling error (bias)

<ロト <問ト < 臣ト < 臣

- CC: component correction, 2000
- IIR: independent interference reduction, 2001
- GLSW: generalized least squares weighting, 2003
- EPO: external parameter orthogonalization, 2003
- TOP: calibration transfer by orthogonal projection, 2004
- DCPS: difference correction of prediction samples, 2005
- DOP: dynamic orthogonal projection, 2006
- EROS: error removal by orthogonal subtraction, 2008

$n_{ au}$ replicate measurements	$n_{ au}$ reference measurements
Matched y-values	Non-matched y-values (e.g. uncontrolled online measurements)
D approximated as	D approximated as
$\hat{\mathbf{D}} = \underbrace{\mathbf{X}_{\tau,2}}_{slave} - \underbrace{\mathbf{X}_{\tau,1}}_{master}$	$\hat{\mathbf{D}} = \underbrace{\mathbf{X}_{\tau}}_{slave} - \underbrace{\mathbf{A} \mathbf{X}_{c}}_{master}$
GLSW & TOP (calibration transfer), EPO, DCPS & EROS (temperature changes), IIR (unknown variation), CC (unknown drift)	DOP (unknown drift)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Shrinking	Orthogonal projection	Subtraction
GLSW	CC, IIR, EPO, DOP, TOP, EROS	DCPS
Calibrate with $\{\mathbf{X}_{c}\hat{\mathbf{W}}, \mathbf{y}_{c}\}$, where $\hat{\mathbf{W}} = \left(\frac{\hat{\mathbf{D}}^{\mathrm{T}}\hat{\mathbf{D}}}{n_{\tau}-1} + \alpha^{2}\mathbf{I}\right)^{-\frac{1}{2}}$	Calibrate with $\{\mathbf{X}_{c}\hat{\mathbf{N}}, \mathbf{y}_{c}\}$ $\hat{\mathbf{D}} = (\mathbf{T}\mathbf{P}^{T} + \mathbf{E})$ $\hat{\mathbf{N}} = (\mathbf{I} - \mathbf{P}\mathbf{P}^{T})$	Calibrate with $\{\mathbf{X}_{c}, \mathbf{y}_{c}\}$ Assuming one drift factor, $\hat{\mathbf{d}}$, correct the prediction sample: $\mathbf{x}_{p*} = \mathbf{x}_{p} - \hat{\boldsymbol{\beta}} \hat{\mathbf{d}}$ $\boldsymbol{\beta}$ optimized to minimize the 2-norm $ \mathbf{x}_{p*} $.

・ロト ・聞ト ・ヨト ・ヨト

Shrinking GLSW	Orthogonal projection CC, IIR, EPO, DOP, TOP, EROS	Subtraction DCPS
Calibrate with $\{\mathbf{X}_{c}\hat{\mathbf{W}}, \mathbf{y}_{c}\}$, where $\hat{\mathbf{W}} = \left(\frac{\hat{\mathbf{D}}^{\mathrm{T}}\hat{\mathbf{D}}}{n_{\tau}-1} + \alpha^{2}\mathbf{I}\right)^{-\frac{1}{2}}$	Calibrate with $\{\mathbf{X}_{c}\hat{\mathbf{N}}, \mathbf{y}_{c}\}$ $\hat{\mathbf{D}} = (\mathbf{T}\mathbf{P}^{T} + \mathbf{E})$ $\hat{\mathbf{N}} = (\mathbf{I} - \mathbf{P}\mathbf{P}^{T})$	Calibrate with $\{\mathbf{X}_{c}, \mathbf{y}_{c}\}$ Assuming one drift factor, $\hat{\mathbf{d}}$, correct the prediction sample: $\mathbf{x}_{p*} = \mathbf{x}_{p} - \hat{\boldsymbol{\beta}} \hat{\mathbf{d}}$ β optimized to minimize the 2-norm $ \mathbf{x}_{p*} $.
ANALYTICAL RESULTS	(i) Equiva one drift co	alent for omponent

Shrinking GLSW	Orthogonal projection CC, IIR, EPO, DOP, TOP, EROS	Subtraction DCPS
Calibrate with $\{\mathbf{X}_{c}\hat{\mathbf{W}}, \mathbf{y}_{c}\},\$ where $\hat{\mathbf{W}} = \left(\frac{\hat{\mathbf{D}}^{\mathrm{T}}\hat{\mathbf{D}}}{n_{\tau}-1} + \alpha^{2}\mathbf{I}\right)^{-\frac{1}{2}}$ ANALYTICAL RESULTS (ii) Equival	Calibrate with $\{\mathbf{X}_c \hat{\mathbf{N}}, \mathbf{y}_c\}$ $\hat{\mathbf{D}} = (\mathbf{T} \mathbf{P}^T) + \mathbf{E}$ $\hat{\mathbf{N}} = (\mathbf{I} - \mathbf{P} \mathbf{P}^T)$ ent when (i) Equiva- d $\alpha \rightarrow 0$ one drift co	Calibrate with $\{\mathbf{X}_{c}, \mathbf{y}_{c}\}$ Assuming one drift factor, $\hat{\mathbf{d}}$, correct the prediction sample: $\mathbf{x}_{p*} = \mathbf{x}_{p} - \hat{\boldsymbol{\beta}} \hat{\mathbf{d}}$ β optimized to minimize the 2-norm $ \mathbf{x}_{p*} $.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- \bullet More complex than determining pseudo-rank of \hat{D}

 - Results based on random matrix theory and perturbation theory (Nadler et al.)

- \bullet More complex than determining pseudo-rank of \hat{D}

 - Results based on random matrix theory and perturbation theory (Nadler et al.)

$$\hat{y}_{\rho} = \mathbf{x}_{\rho}^{\mathrm{T}} \hat{\mathbf{b}}$$

= $(y_{\rho} \mathbf{s}^{\mathrm{T}} + \text{spectra from other species})\hat{\mathbf{b}} + \mathbf{d}^{\mathrm{T}} \hat{\mathbf{b}} + (\text{noise})_{\rho} \hat{\mathbf{b}}$

- More complex than determining pseudo-rank of $\hat{\boldsymbol{D}}$

 - Results based on random matrix theory and perturbation theory (Nadler et al.)

$$\hat{y}_{\rho} = \mathbf{x}_{\rho}^{\mathrm{T}} \hat{\mathbf{b}}$$

$$= (y_{\rho} \mathbf{s}^{\mathrm{T}} + \text{spectra from other species}) \hat{\mathbf{b}} + \mathbf{d}^{\mathrm{T}} \hat{\mathbf{b}} + (\text{noise})_{\rho} \hat{\mathbf{b}}$$

Prediction error constituents after drift correction
 b ⊥ estimated drift-space bias due to drift |d^Tb|↓ ✓

イロン イヨン イヨン イヨ

- More complex than determining pseudo-rank of $\hat{\boldsymbol{D}}$
 - Wilks' 🙏 test, Malinowski's F-test, Faber-Kowalski F-test
 - Results based on random matrix theory and perturbation theory (Nadler et al.)

$$\hat{y}_{\rho} = \mathbf{x}_{\rho}^{\mathrm{T}} \hat{\mathbf{b}}$$

$$= (y_{\rho} \mathbf{s}^{\mathrm{T}} + \text{spectra from other species}) \hat{\mathbf{b}} + \mathbf{d}^{\mathrm{T}} \hat{\mathbf{b}} + (\text{noise})_{\rho} \hat{\mathbf{b}}$$

- Prediction error constituents after drift correction
 - $\mathbf{b} \perp$ estimated drift-space bias due to drift $|\mathbf{d}^{\mathrm{T}}\mathbf{b}| \downarrow$
 - RMSECV ↑
 bias in PCR/PLSR ↑

X

< ロ > < 同 > < 回 > < 回 > < 回

- $\bullet\,$ More complex than determining pseudo-rank of \hat{D}

 - Results based on random matrix theory and perturbation theory (Nadler et al.)

$$\hat{y}_{\rho} = \mathbf{x}_{\rho}^{\mathrm{T}} \hat{\mathbf{b}}$$

$$= (y_{\rho} \mathbf{s}^{\mathrm{T}} + \text{spectra from other species}) \hat{\mathbf{b}} + \mathbf{d}^{\mathrm{T}} \hat{\mathbf{b}} + (\text{noise})_{\rho} \hat{\mathbf{b}}$$

• Prediction error constituents after drift correction

• b \perp estimated drift-space	bias due to drift $ \mathbf{d}^{\mathrm{T}}\mathbf{b} \downarrow$	~
 RMSECV ↑ 	bias in PCR/PLSR \uparrow	×
● b ₂ ↑	variance due to noise \uparrow	×

Image: A math a math

- Data generation
 - Using Beer's law and known pure component spectra of 4 species
 - Drift in 7-dimensional loading space $S(\mathbf{P}_d)$, overlapping with signal loading space $S(\mathbf{P}_s)$

イロト イヨト イヨト イヨト

- Data generation
 - Using Beer's law and known pure component spectra of 4 species
 - Drift in 7-dimensional loading space $S(\mathbf{P}_d)$, overlapping with signal loading space $S(\mathbf{P}_s)$
- Estimated drift-space for one (out of 5) reference sample

$$\hat{\mathbf{d}}^{\mathrm{T}} = \sigma_{\mathbf{d}}^{\mathrm{T}} \begin{bmatrix} \mathbf{p}_{d,1}^{\mathrm{T}} \\ \mathbf{p}_{d,2}^{\mathrm{T}} \\ \mathbf{p}_{d,3}^{\mathrm{T}} \\ \vdots \\ \mathbf{p}_{d,7}^{\mathrm{T}} \end{bmatrix} +$$

- Data generation
 - Using Beer's law and known pure component spectra of 4 species
 - Drift in 7-dimensional loading space $S(\mathbf{P}_d)$, overlapping with signal loading space $S(\mathbf{P}_s)$
- Estimated drift-space for one (out of 5) reference sample

$$\hat{\mathbf{d}}^{\mathrm{T}} = \sigma_{\mathbf{d}}^{\mathrm{T}} \begin{bmatrix} \mathbf{p}_{d,1}^{\mathrm{T}} \\ \mathbf{p}_{d,2}^{\mathrm{T}} \\ \mathbf{p}_{d,3}^{\mathrm{T}} \\ \vdots \\ \mathbf{p}_{d,7}^{\mathrm{T}} \end{bmatrix} + \sigma_{\mathbf{s}}^{\mathrm{T}} \begin{bmatrix} \mathbf{p}_{s,1}^{\mathrm{T}} \\ \vdots \\ \mathbf{p}_{s,4}^{\mathrm{T}} \end{bmatrix} +$$

- Data generation
 - Using Beer's law and known pure component spectra of 4 species
 - Drift in 7-dimensional loading space $S(\mathbf{P}_d)$, overlapping with signal loading space $S(\mathbf{P}_s)$
- Estimated drift-space for one (out of 5) reference sample

$$\hat{\mathbf{d}}^{\mathrm{T}} = \sigma_{\mathbf{d}}^{\mathrm{T}} \begin{bmatrix} \mathbf{p}_{d,1}^{\mathrm{T}} \\ \mathbf{p}_{d,2}^{\mathrm{T}} \\ \mathbf{p}_{d,3}^{\mathrm{T}} \\ \vdots \\ \mathbf{p}_{d,7}^{\mathrm{T}} \end{bmatrix} + \sigma_{\mathbf{s}}^{\mathrm{T}} \begin{bmatrix} \mathbf{p}_{s,1}^{\mathrm{T}} \\ \vdots \\ \mathbf{p}_{s,4}^{\mathrm{T}} \end{bmatrix} + \sigma_{n} \operatorname{randn}(1,L)$$

- Data generation
 - Using Beer's law and known pure component spectra of 4 species
 - Drift in 7-dimensional loading space $S(\mathbf{P}_d)$, overlapping with signal loading space $S(\mathbf{P}_s)$
- Estimated drift-space for one (out of 5) reference sample

$$\hat{\mathbf{d}}^{\mathrm{T}} = \sigma_{\mathbf{d}}^{\mathrm{T}} \begin{bmatrix} \mathbf{p}_{d,1}^{\mathrm{T}} \\ \mathbf{p}_{d,2}^{\mathrm{T}} \\ \mathbf{p}_{d,3}^{\mathrm{T}} \\ \vdots \\ \mathbf{p}_{d,7}^{\mathrm{T}} \end{bmatrix} + \sigma_{\mathbf{s}}^{\mathrm{T}} \begin{bmatrix} \mathbf{p}_{s,1}^{\mathrm{T}} \\ \vdots \\ \mathbf{p}_{s,4}^{\mathrm{T}} \end{bmatrix} + \sigma_{n} \operatorname{randn}(1,L)$$

$$\sigma_{\mathbf{d}^{\mathrm{T}}} = [1 \times randn(1, 2) \quad 0.1 \times randn(1, 5)]$$

$$\sigma_{\mathbf{s}^{\mathrm{T}}} = [0.3 \times randn(1, 4)]$$

$$\sigma_{n} = 0.1$$

NIR, 3 species

NIR, 4 measured properties

- Unifying framework
 - Many drift-correction methods proceed in two steps: (i) drift estimation, (ii) drift correction

・ロト ・聞ト ・ヨト ・ヨト

- Unifying framework
 - Many drift-correction methods proceed in two steps: (i) drift estimation, (ii) drift correction
- Illustrative examples
 - Shrinkage performs better than orthogonal projection typically when significant signal present in estimated drift

<ロト <問ト < 臣ト < 臣

- Unifying framework
 - Many drift-correction methods proceed in two steps: (i) drift estimation, (ii) drift correction
- Illustrative examples
 - Shrinkage performs better than orthogonal projection typically when significant signal present in estimated drift
- Open issues
 - Statistically sound approach to choose meta-parameters

- Unifying framework
 - Many drift-correction methods proceed in two steps: (i) drift estimation, (ii) drift correction
- Illustrative examples
 - Shrinkage performs better than orthogonal projection typically when significant signal present in estimated drift
- Open issues
 - Statistically sound approach to choose meta-parameters
 - Multi shrinkage parameters $\{\alpha_1, \alpha_2, \dots\}$

イロト イヨト イヨト イヨト