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Abstract

It has been shown that the prediction error from PCR can be reduced by using both the labeled and unlabeled data for stabilizing the principal component

subspace, while using only the labeled calibration data in the regression step (T. V. Edward, Journal of Chemometrics, 1995, 9(6), pp. 471-481). When

the unlabeled data represents the labeled data well, this leads to a reduction in both the bias and the variance components of RMSEP. However, in many

practical problems, the unlabeled data may represent the labeled data only approximatively. One such case is analyzed where the two data sets have a

slightly different background.

Background and motivation

Multivariate spectroscopic calibration: instrumental measurements Xc

are related to the corresponding reference analyte concentrations yc by the
inverse regression model yc = Xcb + e

Labeled data {Xc,yc}, unlabeled data {Xu,−−}

•Unlabeled data might encompass the additional measurements available dur-
ing calibration or the prediction data available off-line

•Usually, spectral data from a sample are easy and inexpensive to obtain - the
reference analysis is the resource-demanding step

Standard PCR:

1. Compute the PCA factorization of Xc = T1cP1 + E1

2. Estimate b via a least-squares regression between XcP1 and yc

Xu can be used during calibration

Edwards’ PCR with unlabeled data:

1. Compute the PCA factorization of
[

Xc

Xu

]

=
[

T2c

T2u

]

P2 + E2

2. Estimate b via a least-squares regression between XcP2 and yc

Case A: Xc and Xu are from the same

measurement model X = Y S + E

Monte Carlo simulation study to compute percentage reduction in bias and
variance components of RMSEP with Edwards’ PCR for following examples
where the y-ranges for labeled and unlabeled data are varied:
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x Labeled

Unlabeled.

Yc = 2 + randn(nc, 2)Yc = 2 + randn(nc, 2)

Yc = 2 + randn(nc, 2)Yc = 2 + randn(nc, 2)

Yu = 2 + randn(nu, 2)Yu = 2 + randn(nu, 2)
Yc = 2 + 3 randn(nc, 2)

Yu = 2 + 3 randn(nu, 2)

Yu = 3 + randn(nu, 2)
Yc = [yc1 yc2]
yc1 = 2 + randn(nc, 1)
yc2 = 2 + 3 randn(nc, 1)

Yu = [yu1 yu2]
yu1 = 2 + 3 randn(nu, 1)
yu2 = 2 + randn(nu, 1)

Yu = [yu1 yu2]
yu1 = 2 + randn(nu, 1)
yu2 = 4 − yu1

Fig. 1: Schematic diagram of Yc and Yu using MATLAB command randn()
that draws samples from a normal distribution.

Example %∆RMSEP

1 12
2a 0
2b 38
3 12
4 8
5 19

Edwards’ PCR leads to lower RMSEP

for all examples except 2a, where un-

labeled data have low leverage

RMSEP 2 = bias2 + variance

Both bias and variance components of

RMSEP are reduced due to better la-

tent space estimation

Case B: Xu has drift, i.e. Xu comes from the

measurement model Xu = Yu S + 1dT + Eu
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Fig. 2: Monte Carlo simulation to compute
the bias and variance components of RMSEP
with PCR and with Edwards’ PCR, plotted as
a function of ||d||2.

Xc = Yc S + Ec

Xu = Yu S + 1dT + Eu

Interpretation of d:

• non-zero mean noise

• difference in background (baseline)

• extra component due to new ana-
lyte, change in temperature, pH or
probe alignment etc.

Note the regions

•R1: Bias and variance lower in Ed-
wards’ PCR when drift is negligible

•R2: Reduction in variance is offset
by the increase in bias due to drift

Why is the bias due to drift more
in Edwards’ PCR?

bT

pcrd = ||bpcr||2 ||d||2 cos(θpcr)

bT

Edd = ||bEd||2 ||d||2 cos(θEd)

Use of unlabeled data makes load-
ing subspace include d, hence

θEd < θpcr

bT

Edd > bT

pcrd

0
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Fig. 3: One realization of data with ||d||2 in region R2 (see Fig. 2).

Even very little drift can offset the gains from using unlabeled data

Conclusions

This study shows, via Monte Carlo simulations, the trade-off in prediction error between (i)
smaller variance due to improved estimation of the loading space, and (ii) larger bias due to
the reduction of the angle between b and the drift components. The bias-variance trade-off is
unfavorable in the presence of very small amounts of drift in unlabeled data. The latter may
often not be verifiable in advance. Hence, Edwards’ PCR is recommended only with extra X
measurements collected during calibration, not with prediction data available off-line.
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