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ABSTRACT Although principal components analysis (PCA) has shown some 
utility as a multivariate statistical process control (MSPC) tool, a theoretical basis 
for its use with dynamic process data has been lacking. It is shown here that, for 
processes with more measurements than states, proper application of PCA can 
facilitate the process monitoring and fault detection problem. When the PCA 
model is accurate, variations in the process states appear primarily as variations 
in PCA scores, while noise mainly affects the residuals. This allows one to 
consider on the the noise properties when deriving error-detection limits for the 
PCA residuals. In particular, the process dynamics need not be considered 
explicitly. We also show how an arbitrary stat-space model can be transformed 
so that its states are directly related to the PCA scores. 
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Abstract 

Although principal components analysis (PCA) has shown some utility as a multivariate statistical process control 
(MSPC) tool, a theoretical basis for its use with dynamic process data has been lacking. It is shown here that, for 
processes with more measurements than states, proper application of PCA can facilitate the process monitoring 
and fault detection problem. When the PCA model is accurate, variations in the process states appear primarily as 
variations in the PCA scores, while noise mainly affects the residuals. This allows one to consider only the noise 
properties when deriving error-detection limits for the PCA residuals. In particular, the process dynamics need not 
be considered explicitly. We also show how an arbitrary state-space model can be transformed so that its states 
are directly related to the PCA scores. 

Keywords: principal components - statistical process control 

INTRODUCTION 

Because of recent advances in process sensors 
and .data acquisition systems, today's chemical 
processes are becoming better instrumented. In 
many cases, this instrumentation provides re­
dundant data, i.e., some of the measurements 
are highly correlated. Principal components 
analysis (PCA) can express the essential infor­
mation contained in these measurements in 

* To whom correspondence about this paper should be 
addressed. 

terms of a relatively small number of "latent 
variables". The utility of doing this has been 
demonstrated in previous work [1-4], in which 
PCA has been applied to chemical process data, 
and multivariate statistical process control 
(MSPC) methodology has been developed. 

Recently, Ricker [5] has shown that when the 
process ea~ be consi9.ered to be at steady-state, 
PCA is equivalent to a special type of Kalman 
filter. Until now, however, a theoretical basis for 
the use of PCA with dynamic process data has 
been lacking. The main contribution of this 
paper is to show when it is appropriate to apply 
MSPC techniques to such data, and how the 
results should be interpreted. 

0924-3089 / 90 / $03.50 © 1990 - Elsevier Science Publishers B.V. 
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PRINCIPAL COMPONENTS ANALYSIS 

We consider an m by n data matrix 1, X, in 
which each row, x[, is a sample of n variables 
taken at a specific time. PCA decomposes such a 
matrix into the sum of the products of n pairs 
of v~ctors [6,7]. Each pair consists of a vector in 
f!Jtn called the loadings, pi, and a vector in f!Jtm 
referred to as the score~, t i. Thus X can be 
written as 

(1) 

The matrix of loadings vectors, P, forms an 
orthogonal basis for the space spanned by X and 
the individual Pi are the eigenvectors of the 
scatter matrix of X, defined as: 

XTX 
scatter(X) = m _ 1 

Thus 

scatter(X)pi = A.ipi 

(2) 

(3) 

where A.i is the eigenvalue associated with the 
eigenvector Pi· If X has been mean-centered 
(i.e., each variable is scaled to have zero mean) 
the scatter matrix is equal to the covariance 
matrix. If X has been mean-centered and scaled 
to unit variance (autoscaled), the scatter matrix 
is equivalent to the correlation matrix. The load­
ings vectors are often referred to as principal 
components, or as "latent variables" (particu­
larly in Partial Least Squares calibration) be­
cause they are linear combinations of the origi­
nal variables that together explain large frac­
tions of the information in the X matrix. Each 
of the ti is simply the projection of X onto the 
basis vector pi: 

(4) 

The value of each A. i is equal to the variance in 
the data set associated with the vector direction 

1 In this paper, all matrices are upper-case, boldface vari­
ables. All vectors are lower-case, boldface italic variables and 
are column vectors. A superscript "T" indicates the trans­
pose. Thus, x T is a row vector. 

Pi· In fact, fraction variance in direction Pi is 
given by 

n 

(5) 
i=l 

PCA is very closely related to the Singular Value 
Decomposition (SVD) [6], by which a data ma­
trix, X, is decomposed as 

X = ill:VT (6) 
Here, the columns of V are equal to the PCA 
eigenvectors ( pJ and .E is a diagonal matrix 
containing the singular values, which are equal 
to the square roots of the eigenvalues of 
scatter(X). 

Once the eigenvectors have been determined 
via PCA or SVD, selected samples can be pro­
jected onto the eigenvectors. These projections 
are commonly referred to as "scores plots" and 
are often useful for showing the relationships 
between the samples. (In this context, "sample" 
refers to the vector of process measurements 
taken at a specific instant in time.) Plots can be 
made of the projections of the sample onto a 
single eigenvector versus sample number (or 
time), or onto the plane formed by two eigenvec­
tors. A projection of the samples onto the two 
eigenvectors associated with the largest eigen­
values depicts the largest amount of information 
about the relationship between the samples that 
can be shown in two dimensions using a linear 
projection. It is for this reason that PCA is often 
used as a pattern recognition and sample classi­
fication technique. 

Plots of the coefficients of the eigenvectors 
themselves, known as "loadings plots", show the 
relationships between the original variables in 
the data set. Correlations between variables are 
apparent in these loadings plots. 

When a data set is subjected to PCA, it is 
often found (and it is generally the objective) 
that only the first few eigenvectors are associ­
ated with systematic variation in the data, and 
the remaining eigenvectors are associated with 
"noise". Noise in this case refers to uncontrolled 
process and instrumental variations arising from 
random influences. PCA models are formed by 
retaining only the eigenvectors that describe 
systematic variations in the data. Determina-
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tion of the proper number of eigenvectors can be 
done by cross-validation [8] or other techniques, 
such as comparison of the distribution of eigen­
values to the distribution expected for random 
variables [9]. 

Once the PCA model is formed, new data can 
be viewed as projections onto single eigenvectors 
or onto the plane formed by a pair of eigenvec­
tors. The "goodness of fit" between new data 
and the model can be monitored by calculation 
of the "residual". For a reduced-order model, 
Pq, (where Pq is made up of the first q eigenvec­
tors in V) and a new data matrix, X, the residual 
matrix R is given by 

(7) 

For any sample, xT, in X, the sum-of-squared­
residuals (which can also be thought of as the 
squared length of the residual vector, 'i T m n 
dimensional space) is 

(8) 

The value of the scalar, Q, is a measure of the 
"goodness of fit" of the new sample, xT, to the 
model Pq . 

STATE- SPACE MODEL OF A DYNAMIC PROCESS 

Consider a linear, time-invariant (LTI), dis­
crete, state-space process model of the form: 

x(k+l)=~x(k)+fu(k)+v(k) (9) 

y( k) = Cx ( k ) + Du ( k ) + e ( k ) ( 10) 

where x(k) is the state vector (in ~n) at sam­
pling period k, u(k) is the input vector (in ~r), 
and y( k) is the output measurement vector (in 
9PP ). The vector v( k) represents the state noise 
or disturbance inputs; e( k) is measurement 
noise, which, for periods of "normal" operation 
is assumed to be random with zero mean. The 
t, f, C, and D matrices are assumed to be 
constant. Note that eqn. (9) is a recursive rela­
tionship that allows one to calculate the state 
vector at sampling period k + 1 in terms of the 
states and inputs at period k. Equation (10) 
shows how the measurements, y( k ), are related 
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to the states, inputs, and measurement noise. 
Many references concerning the state- space for­
malism are available from literature [10-12]. 

For the purposes of this paper, we assume 
that D = 0, which implies that changes in the 
inputs, u( k ), do not affect the measurements, 
y( k ), instantaneously. Due to the delay caused 
by sampling, this is a realistic assumption of 
most chemical processes. If, however, Dis known 
(and non-zero), the effect of the term Du(k) in 
eqn. (10) can be subtracted from y( k ), and the 
methods described below can still be applied in a 
straightforward manner. 

Note that although the number of state vari­
ables, n, is a fundamental property of a 
process 2

, the coordinate system defining the 
numerical values of the states may be chosen 
arbitrarily. We exploit this property of the model 
in the next section. 

Immediately observab/,e states 

We define the "immediately observable" 
states as the subset of the n state variables that 
can be estimated from a sing/,e sample of the p 
outputs. From an examination of eqn. (10), it is 
easy to see that the number of immediately 
observable states is equal to the rank of C. Let 
rank (C) = q and note that q ~ min(n, p). 

One can transform the state- space model 
given in eqns. (9) and (10) to a form in which the 
immediately observable states are easy to calcu­
late. We first perform a singular-value decom­
position on the C matrix: 

(11) 

In this case, U is p by p, Vis n by n, and I: has 
the form: 

L = [ ~ ~] 
L = [~] 
L=[s o] 

for q < p and q < n 

for q < p and q = n 

for q = p and q < n 

2 This is usually called the system "order" . 

(12a) 

(12b) 

(12c) 
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where Sis a q by q diagonal matrix of singular 
values. Define a new matrix, Q, as follows: 

Q ~ V [ S ~ 1 ~ ] for q < n ( 12d) 

Q = vs- 1 for q = n (12e) 

where in eqn. (12d), the matrix in brackets is n 
by n, and I is an identity matrix of size n - q. 
Note that in eqn 12(e) Q is defined such that 
Q - 1 exists. We can now define a new coordinate 
system for the state variables, which is related 
to the original one according to: x/ k) = 

Q - 1x( k ), where xr is the state vector in the new 
(rotated) coordinate system. Substituting x( k) 
= Qxr( k) into eqns. (9) and (10), we obtain (for 
D =0): 

xr(k + 1) = 4lrxr(k) + rru(k) + Q- 1v(k) (13) 

y(k) = erxr(k) + e(k) (14) 

where 

4lr = Q- 14lQ (15) 

rr = Q- lr (16) 

er= u[~ ~] for q < p and q < n (17a) 

er=u[~] for q < p and q = n (17b) 

er= U[ I o] for q = p and q < n (17c) 

In eqn. (17), the matrix in brackets is p by n in 
all cases, and the identity matrix is of dimension 
q. Note that the new state- space model has the 
same form as that in eqns. (9) and (10), and the 
input and output variables are also identical. 
Thus, the only effect of the change of coordi­
nates is in the numerical values of the states. 

As is apparent froin eqn. (14), only the first q 
states in xr have a direct effect on the outputs. 
Let x q( k) be the vector of the first q variables 
in xr( k ), i.e., the immediately observable states. 
Then eqn. (14) can be re-written as: 

y(k) = Pqxq(k) + e(k) (18) 

where Pq is an orthonormal matrix defined as: 

Pq=v[~]forq<p (19a) 

Pq = U for q = p (19b) 

Given a sample of the outputs, y( k ), we can use 
eqn. (18) to estimate x q( k) as follows: 

xq(k) =P;['y(k) (20) 

The corresponding estimate of the measurement 
noise is: 

e( k) = y( k) - .Y( k) 

= (1- PqP;)y(k) 

where 

y(k)=Pqxq(k) 

= PqP;['y(k) 

(21) 

(22) 

As discussed, e.g. by Ricker [13], eqn. (20) 
provides an optimal estimate of the states in the 
sense that it minimizes e(k)e(k), i.e., it is the 
solution to the linear-least-squares problem. 
Note that when q = p, PqP;[' =I, and the esti­
mated measurement noise will be zero, regard­
less of the values of the outputs. In this case, the 
estimated measurement noise cannot provide 
useful diagnostic information about the system. 
Otherwise, however, we can compare the current 
value of e( k) to our expectations (based on a 
statistical analysis of past process behavior). As 
we shall show in the next section, this forms the 
basis for PCA monitoring of the process. The 
most favorable situation occurs when p » q, 
and, in particular, when p » q = n. In this case, 
a fault in a single measurement is most likely to 
show up in the residuals rather than in the 
estimated states. 

The state-estimation approach described 
above is quite different from that used in the 
development of the Kalman filter (see, e.g. 
[5,10]). The goal of the Kalman filter is to ob­
tain estimates of all n of the states. In the 
present case, this can only happen when q = n. 
Furthermore, the Kalman filter is designed to 
minimize the squared error in the· state esti­
mates (not the estimated measurement noise). 
To do so, the filter compensates for the statisti­
cal characteristics of both the measurement 
noise, e( k ), and the state disturbances, v( k ). 
Its main disadvantage is that it requires a com­
plete dynamic model of the system (i.e., the ~ 
and r matrices in addition to the c matrix), and 
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one must specify the expectation of e( k) and 
v( k ). The large amount of required information 
is difficult to obtain for a chemical process of 
typical complexity. Equations (20)-(22), on the 
other hand, are essentially a simpler "filter", 
which can be designed based on a knowledge of 
Conly. 

THE BASIS FOR PCA MONITORING 

Imagine that we have an immediately ob­
servable process that can be modeled by eqns. 
(9) and (10). Let n be the number of states 
needed to describe the process dynamics. As­
sume that we have collected m "calibration" 
samples, yT(k), of the p outputs, forming them 
by p matrix, Y (with m ~p). Then according to 
eqn. (10), the relationship of the sampled out­
puts to the states and measurement noise is: 

Y=XCT +E (23) 

where X is an m by n matrix of state variables 
(in which each row is the vector of state varia­
bles at a particular sampling period), and E is an 
m by p matrix of measurement noise signals. 
Both X and E are unknown, and in the general 
case, rank(X) = n and rank(E) = p. 

If we perform a PCA decomposition on Y, 
retaining q latent variables, we obtain: 

(24) 

Comparing this result to eqns. (14) and (23), we 
see that PCA can be interpreted as a state-space 
model, with Tq representing estimates of the q 
immediately observable state variables (in a par­
ticular coordinate system) at each sampling 
period, and Pq taking the place of the C matrix. 
Since Pq is orthonormal, PCA automatically 
gives us a state-space model in the form of eqn. 
(14). Note, however, that rank(Ep - q) equals 
p - q. In other words, unless the "true" mea­
surement noise, E, is also rank p - q, the PCA 
estimate will be biased. This may or may not be 
a problem in practice, depending on the nature 
of the experiments used to obtain Y, as dis­
cussed in the next section. 
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Let us assume for the moment that Pq is an 
accurate representation of the true C matrix 
(which implies that we know the number of 
immediately observable states, q ). The PCA re­
sidual for a given output sample, y T( k ), is de­
fined as: 

(25) 

Thus the PCA residuals are identical to the 
estimated measurement noise as defined in eqn. 
(21). In other words, if the model is correct, the 
residuals are a function of e( k) only, regardless 
of the system dynamics. Since we have stipu­
lated that, under normal conditions, e( k) is 
random with zero mean (and uncorrelated with 
previous values of e ), we can use well-estab­
lished statistical methods to monitor r( k) and 
verify that it indeed satisfies this condition. 

OBTAINING AN ACCURATE ESTIMATE OF Pq 

The success or failure of PCA monitoring 
depends, to a large extent, on the accuracy of 
the model, i.e., the matrix Pq. Normally 3

, this 
matrix must be estimated from the calibration 
data, Y, as outlined in the previous section. It is 
clear that the most favorable situation 4 occurs 
when the term XCT in eqn. (23) is large relative 
to the noise, E. If the system is controllable (see, 
e.g. [10]), then it is possible to carry out an 
experiment in which the input variables, u( k ), 
are varied so as to achieve a good signal-to-noise 
ratio for all n state variables. 

On the other hand, if u is allowed to vary 
"naturally", or if the system includes states that 
are accessible only through the disturbance vec­
tor, v, then it will not be possible to guarantee 
adequate excitation of all n states. For example, 

3 The exception is when an accurate theoretical model of the 
system is available, but this is rare. 
4 In practice, however, good estimates of Pq may be ob­
tained even for very noisy systems provided that the noise is 
uncorrelated, i.e., when the singular values of XCT are large 
relative to the singular values of E. This is the case in the 
example application described at the end of the paper. 
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if calibration data were collected during a period 
when v was relatively small, the resulting esti­
mate of Pq might not reflect the influence of all 
the states. If this Pq were then used to filter new 
data, as in eqn. (21 ), and v suddenly became 
large, the value of e( k) might signal a fault. 
This may or may not be desirable depending 
upon the situation. If the purpose of the moni­
toring were to detect disturbances, such a model 
would be effective. If the objective were to de­
tect sensor failure and fundamental process 
changes, however, the model could give false 
alarms when disturbances occurred. 

USING THE PCA RESIDUALS 

Once an estimate of Pq is obtained, it can be 
used to calculate residuals as shown in eqn. (25), 
and the sum-of-squared-residuals, Q, as shown 
in eqn. (8). Jackson and Mudholkar [14] used 
the results of Jenson and Solomon [15] to show 
that approximate confidence limits can be 
calculated for Q, provided that all the eigenval­
ues of covariance (Y) are known. In practice, the 
underlying distribution of the residuals of indi­
vidual variables can vary substantially from 
Gaussian without affecting the results. 

The confidence limit on Q can be calculated 
as: 

where 
n 

ei= I: t...ij 

j=q+l 

and 

28 8 h =1---1_3 
0 392 

2 

(26) 

for· i = 1, 2, 3 (27) 

(28) 

In eqn. (26), ea is the normal deviate corre­
sponding to the upper (1 - a) percentile. Equa­
tion (27) simply states that the ei are equal to 
the sum of the eigenvalues for the eigenvectors 
not used in the model, taken to the ith power. 

Note, however, that this result was derived as­
suming random errors of mean zero, etc. Auto­
correlated data would certainly affect this re­
sult. In practice, the present authors have found 
that the application of eqns. (26)-(28) can 'lead 
to erroneous results when there is one principal 
component not retained in the PCA model with 
an eigenvalue that is much larger than the re­
maining eigenvalues. When this occurs, the value 
of h 0 can be less than zero and the Qa limits are 
clearly wrong. In this case, however, the prin­
cipal component (PC) responsible for the large 
eigenvalue should probably be retained in the 
model. 

The variables responsible for large Q values 
can often be found through normal statistical 
process control methods which track single vari­
ables. However, there are instances when these 
methods fail to detect systematic changes in the 
process or its sensors because the values of the 
individual variables have not gone "out of 
bounds" but have instead just become uncorre­
lated (or changed their correlation) with the 
remaining variables. 

There are several methods for determining 
the source of the large Q values in this case. The 
simplest method is to calculate the column norm 
(the sum of squares over the variables, instead of 
over the samples, as is done to calculate Q 
values) for the residuals matrix for the samples 
with large Q values. Generally, the perturbed 
variables will have the largest residuals. This 
method can fail, however, because it does not 
account for the fact that the average size of the 
residual is different for different variables in a 
data set. What is needed is confidence limits on 
the residuals, so that it is possible to determine 
whether the residuals are abnormally large or 
noisy. The calculation of these confidence limits 
is shown below. 

In other cases, the factors responsible for 
large values of Q can be found by subjecting the 
matrix of 'i vectors to PCA (off-line). This de­
termines the major source of variation in the 
data not accounted for by the original PCA 
model. Typically the variable(s) with the largest 
(absolute value) coefficient in the first eigenvec­
tor from the residuals matrix will be the varia-
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ble(s) responsible for the deviation from the 
PCA model. 

While the Q statistic offers a way to test 
whether the process data has shifted outside the 
normal operating space, there is also a statistic 
that provides an indication of unusual variabil­
ity within the space. This is Hotelling's T 2 sta­
tistic [16]. The value of T 2 for a sample is equal 
to the sum of squares of the scores (adjusted to 
unit variance) on each of the principal compo­
nents in the model. The statistical confidence 
limits for the values for T 2 can be calculated by 
means of the F-distribution as follows 

T2 = q(m- l) F (29) 
q ,m ,a m - q q ,m - q ,a 

Here, m is the number of samples in the data 
set used to calibrate the PCA model, q is the 
number of principal component vectors retained, 
and a corresponds to the standard normal de­
viate. In practice, the authors have found that 
the T 2 statistic is not as useful as the Q statistic 
when dealing with process data. Typically, indi­
vidual process variables will be "out of bounds" 
before an error is indicated by T 2

• We include it 
here, however, for the sake of completeness, and 
because there may be processes outside of the 
authors' experience for which it is useful. 

The residual variance for each variable can be 
calculated for the PCA model. It can be shown 
that for a given data set, X, with a full set of 
PCA vectors, P (of which q are retained), and 
eigenvalues }\, then the variance of the residual 
for the Ph variable is 

n 

s2 = " P2·A · J L,, lj l 
(30) 

i=q+l 

where piJ is the loading of the Ph variable in 
the i th principal component (PC). For the data 
matrix from which the model was obtained this 
relationship will be exact. If, however, it is as­
sumed that the eigenvalues of all the PCs not 
retained in the model are equal (a common as­
sumption), then the variance in the residual of 
the Ph variable can be estimated from 

(31) 
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which requires only the PCs and eigenvalues 
retained in the model. The first term on the 
right hand side in eqn. (31) can be replaced with 
the total sum of squares, which is equal to the 
sum over all of the eigenvalues. In chemical 
processes where many types of sensors with dif­
ferent noise properties are in use, it is probably 
best to use eqn. (30) to estimate the variance of 
the residuals for each variable. For applications 
where the sensors are all closely related, such as 
in spectroscopy, eqn. (31) may be more ap­
propriate. 

Now that the statistical properties of the 
residuals have been calculated, this information 
can be used with hypothesis testing to check for 
failed sensors and changes in the process. This is 
the general method outlined in [17], and is the 
basis for many of the methods surveyed in [18-
20], which, however, require a complete dynamic 
model of the process. 

It is possible to compare the observed and 
expected 5 variance of the residuals of individ­
ual variables in order to identify changes in the 
system and its sensors. The standard F-test 
with the appropriate degrees of freedom may be 
used. The test will check to see whether 

s 2 / s 2 > F 
lnew l old "new , "old , a 

where 

J!new = mnew - q - 1 

Vold= m old - q - 1 

(32) 

(33) 

(34) 

Here mnew and m 01d are the number of samples 
in the test data set and training data set, respec­
tively and q is the number of PCs retained in 
the model. When the inequality in eqn. (32) 
holds, a change in the variance of the residual 
has occurred to a confidence level of 1 - a. The 
F-test parameters can now be used to set upper 
and lower limits on the variance of the residuals. 

The mean residual should be zero for all the 
variables. The t-test can be used to detect a 
shift in the mean away from zero. In this case 
the hypothesis that the means are equal is to be 

5 i.e., as calculated by eqn. (30) or (31). 
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tested. Thus the t-test reduces to 

where the degrees of freedom are both one 
greater than for the case given above. For the 
purpose of setting limits, the variances can be 
assumed to be equal to the variance of the 
residuals of the calibration set as calculated by 
eqn. (30) or (31). Once the desired confidence 
level is chosen, it is possible to solve for the 
difference between the old and new means that 
is marginally significant. 

Note that the ·tests in (32) and (35) require 
multiple samples, i.e., a "window" of samples­
they do not apply for single observations. In 
fact, in order to obtain statistical limits, the 
window has to contain more samples than the 
number of PCs retained in the model. While it 
would be possible to observe the residuals from 
each sample, better sensitivity to changes in the 
system is obtained by looking at a series of 
residuals from recent samples. The number of 
past samples in the series (the width of the 
window) would be based on the response time 
and sensitivity desired for the detection scheme. 
" Wide" windows would allow detection of 
smaller changes, but would not respond as 
quickly to changes as "narrow" windows. 

In order to determine the "detection power" 
of the PCA model, the control limits must be 
converted back to the original units of the data. 
This is done by first determining the vector of 
ratios, h, of the change in a variable to the 
change in its residual (with all other variables 
remaining constant). This is equal to the inverse 
of the diagonal elements of (I - P PT) thus 

q q ' 

(36) 

The PCA detection limits for changes in the 
residual mean can then be scaled by the h 
vector to obtain the detection limits in terms of 
the original variables. In order to obtain the 
detection limits for changes in the residual vari­
ance, the PCA limits must first be converted to 

standard deviations, then scaled and converted 
back to variance limits. The result of these scal­
ing operations is that a limit will be established 
in terms of the original measurement units for 
detection of biases in senors (arising from sensor 
drift or a change in the process) and for detec­
tion of added noise in sensors (arising from ad­
ded measurement noise). 

EXAMPLE OF THE USE OF PCA IN DYNAMIC SYS­
TEMS 

As an example, we consider a process with 
r = 5 inputs, n = 5 states and p = 10 measure­
ments The <I>, r, and C matrices for the process 
are given below in Tables 1-3. These matrices 
were generated randomly, although care was 
taken to assure that the resulting system was 
asymptotically stable and that the non-zero sin­
gular values of the matrices were all relatively 
large. The D matrix was zero. Note that q = n 
in this case. 

The example process was driven by white 
noise of unit variance to produce a Y matrix 
consisting of 1000 samples of the 10 outputs. 
Uncorrelated measurement noise was added to 
each output sample. The variance of the noise 
was equal to the variance of the uncorrupted 
output for each output variable (i.e. the result­
ing output was 50% deterministic variation and 
50% measurement noise). The process outputs 

TABLE 1 

c) Matrix for example system 

[ O.MOO 
-0.2761 -0.0582 -0.6364 0.11~] 0.0216 -0.4511 -0.2586 0.3415 0.4932 

0.6204 -0.0227 0.4012 0.2988 0.0633 
-0.2987 -0.1517 0.5948 -0.1786 0.3078 

0.0295 0.4772 -0.0921 -0.1311 0.5786 

TABLE 2 

f Matrix for example system 

[ O.W55 
-0.6535 -0.0114 0.3726 0.0000] -0.3014 -0.2935 0.5805 -0.2808 0.2099 

-0.204~ -0.0979 -0.4576 -0.2390 0.4931 
0.3669 0.1920 0.1957 0.2874 0.6066 
0.5820 -0.2586 -0.0619 -0.4934 0.0089 
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TABLE 3 

C Matrix for example system 

0.4219 -0.1386 -0.0126 -0.0922 -0.0189 
0.0998 -0.0273 -0.1266 -0.4567 0.1252 
0.0052 0.1546 0.05789 0.0325 0.1544 
0.3851 0.0766 -0.2299 0.0466 0.3672 
0.0888 0.0554 0.2707 0.2040 0.4264 

-0.1016 -0.3428 0.3047 -0.3706 -0.1408 
-0.0620 -0.6174 0.0411 0.2417 0.1964 

0.0498 -0.1887 0.0267 -0.2905 0.1761 
-0.0243 -0.0041 0.0180 -0.2449 0.3680 

0.4857 -0.0906 0.1995 -0.0216 -0.2322 

TABLE 4 

Variance captured by PCA model of example process output 

Principal Eigenvalue % Variance %Total 
component No. variance 

1 1.8781 18.7807 18.7807 
2 1.6026 16.0255 34.8062 
3 1.5282 15.2822 50.0884 
4 1.2669 12.6687 62.7571 
5 1.2177 12.1765 74.9336 
6 0.5906 5.9057 80.8394 
7 0.4972 4.9718 85.8111 
8 0.4958 4.9578 90.7689 
9 0.4715 4.7148 95.4837 

10 0.4516 4.5163 100.0000 

TABLE 5 

PCA Loadings vectors for example system 

0.3650 -0.0899 0.5472 -0.0084 0.0331 
0.4742 0.2864 -0.1022 -0.2648 -0.1558 
0.0061 -0.4360 -0.1441 0.4595 -0.3824 
0.2664 -0.4153 0.2015 -0.4155 0.1579 
0.1229 -0.5980 -0.1591 0.1821 0.0479 
0.2120 0.3638 0.0110 0.5580 -0.1520 
0.0566 -0.0203 0.0037 0.3583 0.8441 
0.5346 0.1656 -0.1679 0.1277 0.1280 
0.4509 -0.1613 -0.4084 -0.0538 -0.0891 
0.1360 -0.0592 0.6390 0.2323 -0.2030 

were scaled to zero mean and unit variance 
(" autoscaled") and a PCA model was obtained 
according to eqn. (24) with q = 5. The variance 
captured by the PCA model is given in Table 4, 
and the loadings vectors retained in the PCA 
model are given in Table 5. 

Here, the correct number of PCs to retain in 
the model is known, i.e., 5. In practice this 
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Fig. 1. Autocorrelation function for outputs (solid lines) and 
residuals (dashed lines) for test data set. 

would have to be determined from cross-valida­
tion or comparison to the expected ratio of 
successive eigenvalues for noisy data, as dis­
cussed previously. 

A new data set of 1900 samples was generated 
by using the same process model and a new 
input sequence, which in this case was a low­
frequency pseudo-random binary sequence 
(PRBS). The PCA model was applied to the 
outputs according to eqn. (7), and a residuals 
matrix was generated. The autocorrelation func­
tion was calculated for each output and the 
residual. These are plotted in Fig. 1, which 
clearly shows that, while the outputs are corre­
lated in time, the residuals are not, which is the 
expected result when the Pq matrix obtained by 
PCA is an accurate representation of the origi­
nal C matrix. 

.Therefore, the statistical tests in eqns. (30) 
and (31) can be used to test the residuals for 
faults and disturbances. As mentioned previ­
ously, a sample window width must be chosen, 
and the desired confidence limits must be set 
before the test limits can be calculated. 

For the example process we will choose, some­
what arbitrarily, a 20 sample window and 99% 
(i.e. a= 0.01) confidence limits. Thus the rele­
vant statistic for detection of changes in the 
variance of the residuals is F14,994,0 .01 which 
equals 2.09, since we have 1000 samples in the 
original data, 20 in the new test sets, and desire 
99% confidence limits. For changes in mean of 
the residuals t1010 = 2.326 and it is possible to 
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Fig. 2. Detection limits for changes in noise mean ( +) and 
variance ( o) in original units. 

calculate the change in mean that is marginally 
significant with eqn. (35), since the variances are 
known from eqn. (30). The detection limits can 
now be converted from the residual space back 
to the original variable space using eqn. (36). 
The results are shown in Fig. 2, which gives the 
detection limits for changes in the mean and 
variance of the measurement noise for each pro­
cess sensor (variable number) in the original 
measurement units. 

The detection limits shown in Fig. 2 illustrate 
some important points. Note that variable num­
ber 7 has by far the worst detection limits for 
both mean and variance changes. A review of 
the loadings given in Table 5, however, shows 
that it is almost entirely included in the PCA 
model, i.e., the sum of squared loadings for this 
variable in the retained PCs is very nearly 1. 
Variables that act nearly independently tend to 
be very strongly included in the model and have 
large detection limits because they are not highly 
correlated to other variables. Much of the error 
in such a variable i~ attributed to variations in 
the states, and does not appear as a residual. 
This is easier to envision when one realizes that 
if a variable was entirely included in the model 
(i.e., one of the states were defined as being 
equal to the measured value), its residual would 
always be zero. 

On the other hand, measurements that have 
little influence on the state estimates also tend 
to have poor detection limits. The variables with 
the best detection limits are typically those that 
are highly correlated with other variables, which 

tends to make them be included in the model to 
an intermediate degree. In the situation where a 
variable does not load into the model at all, its 
residual variance is equal to its original variance . 
For a variable like this, standard SPC would 
work as well as MSPC. 

CONCLUSIONS 

We have shown when it is appropriate to use 
PCA to detect faults and upsets in dynamic 
processes. A particular advantage of the PCA 
approach (relative, e.g., to the Kalman Filter) is 
that it provides a convenient way to estimate 
the C matrix in a standard discrete-time, LTI, 
state-space model. Also, a complete dynamic 
model of the process is not required. 

Proper application of PCA results in residuals 
that are non-autocorrelated. This greatly sim­
plifies the statistics in fault-detection applica­
tions. Standard F- and t-tests can be used to 
monitor the residuals for changes in variance 
(arising from added sensor noise) and mean 
(arising from sensor bias or process changes), 
respectively. Other statistical tests, such as the 
maximum likelihood ratio used by Willsky [18], 
could also be used (although these are not limited 
to processes with redundant measurements). We 
have also shown that detection limits derived 
for the (scaled) PCA residuals can be used to 
calculate detection limits in terms of the mea­
surement units of the original variables. 

We emphasize that MSPC is most effective 
when the process has significantly more mea­
surements than states. One could argue that all 
real systems have an infinite number of states 
and, therefore, could never have more measure­
ments than states. There are many systems, 
however, in which a small number of states 
dominate the dynamic response. The remaining 
states are associated with transients that decay 
very quickly relative to the sampling period. For 
a given process, either an increase in the number 
of measurements or an increase in the sampling 
period will usually make MSPC applicable. We 
contend, therefore, that although MSPC cannot 
be used in all cases, the number of problems it 
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can address is significant and is increasing as 
modem instrumentation systems become more 
common. 
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