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ABSTRACT

Monitoring and fault detection of batch chemical processes is complicated by

stretching of the time axis, resulting in batches of different length. This paper offers an

approach to the unequal time axis problem using the Parallel Factor Analysis 2

(PARAFAC2) model. In part I of this series an algorithm for PARAFAC2 was developed

and extended to N-way arrays. Unlike PARAFAC, the PARAFAC2 model does not

assume parallel proportional profiles, but only that the matrix of profiles preserve its ‘inner

product structure’ from sample to sample. PARAFAC2 also allows each matrix in the

multi-way array to have different numbers of rows. Part II of this series demonstrated how

the PARAFAC2 model could be used to model chromatographic data with retention time

shifts. Fault detection, and to a lesser extent diagnosis, in a semiconductor etch process is

considered in this paper. It is demonstrated that PARAFAC2 can effectively model process

data with unequal dimension in one of the orders such as the unequal batch length problem.

It is shown that the PARAFAC2 model has approximately the same sensitivity to faults as

other competing methods, including principal components analysis (PCA), un-fold PCA

(often referred to as Multi-way PCA), Tri-Linear Decomposition (TLD), and conventional

PARAFAC. The advantage of PARAFAC2 is that it is easier to apply than MPCA, TLD

and PARAFAC because unequal batch lengths can be handled directly, rather than through

preprocessing methods. It also provides additional diagnostic information: the recovered

batch profiles. It is likely, however, that it is less sensitive to faults than PARAFAC2.

KEYWORDS: Multi-way, curve resolution, multivariate statistical process control,

batch process monitoring

1. INTRODUCTION

Many important pharmaceuticals, specialty chemicals and polymers are made in

batch chemical processes. Many steps in the manufacture of semiconductor devices, such

as metal etch, can also be considered batch processes. Fault detection and diagnosis is

important in these systems in order to assure consistent quality products and efficient

process utilization. In each of these applications, the time required to process a batch may

vary. This results in data records of unequal length for each batch. In addition, even

batches of equal length may not follow exactly the same time trajectory, taking longer in

some steps of the processing and less time in others. This makes it less than

straightforward to apply techniques such as un-fold PCA and PARAFAC to the data as

these models assume that the range of normal process trajectories can be modeled as the
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sum over fixed time profiles. Several approaches have been developed to deal with this

problem including dynamic time warping [1-3], truncation of the records, including

centering of the record about a specific process event [4], and the introduction of a

surrogate variable. These approaches are compared in Rothwell et al. [5]. Each of these

approaches alter the original data record in order to make it fit the model. It will be shown

that PARAFAC2 [6-7] can be used on the original data directly, which is potentially

advantageous.

2. DESCRIPTION OF T HE DATA

The data used in this study comes from the metal etch step in semiconductor

processing, specifically the Al-stack etch process. Data was collected on the commercially

available Lam 9600 plasma etch tool [2]. In this process the TiN/Al - 0.5% Cu/TiN/oxide

stack is etched in an inductively coupled BCl3/Cl2 plasma. The key parameters of interest

are the line width of the etched Al line, uniformity across the wafer, and the oxide loss.

Process conditions must be kept constant in order assure consistent results.

The standard recipe for the process consists of a series of six steps. The first two

steps are for gas flow and pressure stabilization. Step 3 is a brief plasma ignition step. Step

4 is the main etch of the Al layer terminating at the Al endpoint, with Step 5 acting as the

over-etch for the underlying TiN and oxide layers. Note that this is a single chemistry etch

process, i.e. the process chemistry is identical during steps 3 through 5. Step 6 vents the

chamber.

The metal etcher used for this study was equipped with 3 sensor systems: machine

state, Radio Frequency Monitors (RFM), and Optical Emission Spectroscopy (OES). The

machine state sensors, built into the processing tool, collect machine data during wafer

processing. The machine data consists of 40 process setpoints and measured and controlled

variables sampled at 1 second intervals during the etch. These are engineering variables,

such as gas flow rates, chamber pressure and RF power. In this work, non-setpoint

process variables with some normal variation were used for monitoring. Engineering

judgment was also used to select variables that should impact product quality. These

variables are listed in Table 1.

The RFM sensors measure the voltage, current and phase relationships at the

fundamental frequency of 13.56 MHz and the next four harmonics at four locations in the

RF control system. The resulting 70 values are sampled every 3 seconds. The presence of
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each chemical species affects the plasma power and phase relationships in unique ways,

thus the RFM sensors provide a surprising amount of chemical information.

The OES is used to monitor the plasma in the range of 245 to 800 nm in three

locations above the wafer using fiber optics. The original data consists of 2042 channels

per location, however, in this work the data was preprocessed by integrating a much

smaller number of peaks (40) in each of the three spectra which correspond to process

gases and species evolving from the wafer due to the etch [2].

Table 1. Machine State Variables Used for Process Monitoring
1 BCl3 Flow 11 RF Power
2 Cl2 Flow 12 RF Impedance
3 RF Bottom Power 13 TCP Tuner
4 RFB Reflected Power 14 TCP Phase Error
5 Endpoint A Detector 15 TCP Impedance
6 Helium Pressure 16 TCP Top Power
7 Chamber Pressure 17 TCP Reflected Power
8 RF Tuner 18 TCP Load
9 RF Load 19 Vat Valve

10 Phase Error

A major objective of this work was to determine which sensors, or combinations of

sensors, are most useful for detecting process faults. Data from the three sensors systems

was used to develop models of the process in a variety of ways and the ability of the

models to detect faults was tested.

Faults were induced in the data by changing the set point for controlled variables,

such as chamber pressure and plasma power, from the normal recipe. The mean values of

the controlled variables were then set back to that of the normal recipe. The effect is a data

record where it appears as if a bias had developed in the sensor for the controlled variable.

Three experiments, numbered 29, 31 and 33, were performed to produce the data

used here. The experiments were run several weeks apart. Forty-three wafers were

processed in each experiment. The three experiments together generated data for 108

normal wafers and 21 wafers with induced faults, though there are several instances where

the data record for the RFM and OES are not complete.

Fault detection results for PCA, un-fold PCA (MPCA), TLD and PARAFAC were

reported in Wise et al. 1999 [4]. In this work, PARAFAC2 is considered.
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3. THE PARAFAC AND PARAFAC2 M ODELS

The PARAFAC model was originally proposed by Harshman [8] and by Carroll

and Chang [9] by the name CANDECOMP. PARAFAC [10] models a 3 dimensional array

X (I ×J × K) as a summation over R outer products of triads of vectors. In order to allow

the use of conventional linear algebra notation, it is convenient to describe the PARAFAC

model in terms of each I  × J slab of X, Xk. Thus

Xk = FDkAT + Rk, (1)

where F is an I × R matrix of factor scores (for the row units), A  is a J × R matrix of

weights for the column units, Dk is a diagonal (R × R) matrix containing the weights for

the k-th slab of X, and Rk denotes an I × J matrix of residuals. The PARAFAC model is

typically fitted to the array X through a procedure of alternating least squares in an attempt

to minimize the sum of squared residuals in R.

In the PARAFAC model all of the Xk slabs are of fixed size, I × J. As noted

above, this might not always be the case. The PARAFAC2 model [9] was developed to

handle the situation where the number of observations (row dimension) in each Xk may

vary.  The PARAFAC2 model is given by

Xk = FkDkAT + Rk, (2)

which is identical to the PARAFAC model except that F is not fixed for all the slabs Xk.

Instead, there is a unique nk × R matrix Fk for each nk × J slab Xk. It is clear that without

some restrictions on the model, this form would fit a Principal Components Analysis

(PCA) model of the data of the unfolded X . In PARAFAC2, however, the loading

matrices, AD1, ..., ADK, must be proportional, which alone would not make the model

unique. In addition, the constraint that the cross product matrix FkTFk is constant over k is

imposed, which under fairly general conditions, is enough to make the model unique (see

discussion in Kiers et. al. 1999 [8]).

It can be shown that the constraint FkTFk, = F jTF j  for all j, k = 1, ..., K is

equivalent to requiring that Fk = PkF for some columnwise orthonormal (nk x R) matrix

Pk and a fixed (R x R) matrix F. Given this, the PARAFAC2 can be identified by

minimizing

σ(P1,...,Pk,F,A ,D1,...,Dk) = Σ ||Xk - PkFDkAT||2 (3)
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over all of its arguments, subject to the constraint that PkTPk = I r and that all the Dk are

diagonal. Algorithms for identifying PARAFAC2 models are described in detail in Kiers et.

al. [8].

An existing PARAFAC2 model can be fit to new data. This is done by minimizing

the function given in Eq. 3 subject to the additional constraint that F and A, determined

from the calibration set, are fixed. The algorithm proceeds as shown in [8], however, all

steps which update F and A are omitted.

All computations were performed in MATLAB 5.2 [11]. Code for fitting the

PARAFAC2 models was developed by Rasmus Bro and used in Part II of this series [7].

4. CONTROL L IMITS FOR MSPC

The central idea of multivariate, or in this case, multi-way, statistical process

control is to first develop a model that describes the calibration data. New data is then

compared to the calibration model to see how well it fits. Any assessment of the fit,

however, must include some statistical measures of the similarity of the new data to the old.

In the PARAFAC2 model there are several parameters which can be tracked. The first and

perhaps most important is the lack of fit, measured by the sum of squared residuals. One

problem with this measure in PARAFAC2 is that the size of the data record for each batch

can be different. Thus, we have chosen to normalize the sum of squared residuals by the

number of time samples, in order to obtain an average residual over the batch.

SSEn(k) = SSE/nk = Σ ||Rk ||2/nk (4)

Control limits can then be placed on the SSEn through use of the χ2 distribution.

The SSEn values for the calibration data are fit to the  gχ2h distribution using the method of

moments. This fit can be done easily taking advantage of the fact that the mean of a χ2

distribution is equal to the degrees of freedom and the mean is equal to twice the variance.

The scale factor g is thus determined from

g = var(SSEn)/(2*mean(SSEn)); (5)

while the degrees of freedom parameter h is

h = floor(mean(SSEn)/g) (6)
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where “floor” indicates that the degrees of freedom h is rounded down to the next lowest

integer. Limits can then be calculated for the desired confidence interval from the χ2

distribution. In this work we choose 99% as the action limit.

As in PCA, limits can also be placed on the “scores” for each of the batches, in our

case the elements of D. In the development of limits we will assume that these are normally

distributed, though later it will be shown that this is often not the case. Thus each of the R

columns of D are characterized by a mean and variance. Limits can be obtained using the

standard normal deviate where the number of calibration samples exceeds 30, which is the

case in this work. For smaller calibration sets the students-t statistic may be employed. The

99% confidence limits on the scores are the mean ± 2.58 times their standard deviation

(leaving 0.5% in each tail of the distribution).

5. THE PROBLEM OF CORRELATED FACTOR SCORES

In PCA the scores are necessarily orthogonal, but in PARAFAC and PARAFAC2

this need not be the case. In PCA the factors are abstract, while PARAFAC and

PARAFAC2 at least attempts to estimate intrinsic factors. There is no reason to believe that

underlying factors in the data would be independent. An example of this is shown in Figure

1, which shows the scores for the first two components in a PARAFAC2 model of the

OES data for all of the experiments. Calibration data is shown as pluses while the test data

is shown as stars, with a label indicating the type of fault. Besides the clustering of the

data, it is apparent that the scores of the calibration data are very correlated. This is due to

the overall decline in signal strength of OES as the window into the etch chamber clouds

over. Note that many of the fault wafers are obvious because they do not follow the trend.

However, if limits are based simply on the individual calibration scores, none of the fault

wafers are detected as unusual because none of the faults lie outside the range of the

individual scores.

The problem of correlated batch scores can be solved by application of Hotellings T2

statistic. Once a PARAFAC2 model is identified from the calibration data, the elements of

Dk are collected in a single matrix C (K × R), such that the kth row of C is equal to the

diagonal elements of Dk. The matrix C is then autoscaled over all the batches to form the

matrix C'. T2 values are then obtained for each of the K batches from:

Tk2 = C' k(C' TC') -1C' kT (7)
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where C'k is the kth row of C' . Limits can be calculated for future batches using the F-

distribution from

T2R,K,α = (R(K-1)/(K-R)) FR,K-R,α (8)

T2 values for new batches can be computed after the PARAFAC2 calibration model is fit to

the new data. The new batch scores are scaled by the original mean and variance of C and

then Eq 7 above is applied with the new scores replacing C'.

6. SCALING

Scaling in multi-way models can be a complex issue, as illustrated recently by Bro

and Smilde [12]. A common method for scaling in MPCA models is to first remove the

mean process trajectory by unfolding the I ×J × K array to K × IJ  and mean centering the

columns, followed by unfolding to IK ×J  and scaling the columns to unit variance [4].

Alternately, the I ×J × K array can be unfolded to K × IJ  and autoscaled, i.e. adjusted to

mean zero and unit variance [13]. The choice depends upon how heavily one wants to

weight periods of high process variance.

In PARAFAC2, however, the concept of a mean trajectory is meaningless as the

batches are potentially of different length and, even when they are not, they are expected to

have different time behavior. In this study, the machine and RF data were unfolded to

matrices of sum(nk) × J (total number of rows over all the batches by number of variables)

and then autoscaled. As pointed out in [12], this is probably sub-optimal. Instead, offsets

should be determined for each variable such that the model best describes the data in its

original form. This is a possible improvement to the method and should be considered in

future work. Because the OES data is expected to have a natural zero, it was not centered or

scaled at all.

7. DIAGNOSTICS

Like PCA, PARAFAC and PARAFAC2 are rich in diagnostic information.

Loadings in the variable dimension J give information about how the original variables

relate to each other. As an example, consider a PARAFAC2 model of the Experiment 29

machine data for the normal wafers (34 wafers). A two factor model captured 32.9% of the

variation in the data (additional factors did not appear to capture systematic variation). A

bivariate loadings plot for the variable dimension of this data is shown in Figure 2.

Loadings in the time dimension are shown in Figure 3. The loadings for each batch are
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superimposed. Note that the stretching of the time axis is evident: different batches reach

inflections and extremes at different time points, thought the overall shapes are very

similar. When PARAFAC models are fit to this data, the residuals (collected over the time

points) are large in the transition areas (not shown). This is because the time stretching

affects where the transitions occur, but the PARAFAC model assumes a fixed time

trajectory for each of the factors. The batch scores are shown in Figure 4 and are keyed to

the wafer number (two digit experiment number followed by 2 digit wafer number within

the experiment). In this instance the batch scores appear quite random with no obvious

trend with wafer number.

It is also interesting to look at where the PARAFAC2 model does not fit. The

percent variance explained in each variable is given in Figure 5. Here it is apparent that

some of the variables, such as BCl3 and Cl2 flow are not well explained by the model. In

fact, 10 of the 19 variables have less than 20% of their variance explained. Inspection of

the raw data (not shown) shows that these variables are exceedingly noisy, with very little

trend. Residuals can also be collected over the time dimension, and of course the batch

dimension.

The results of fitting the 9 wafers with induced faults to the PARAFAC2 model of

the normal Experiment-29 machine data are shown in Figure 6. Here the fit of the new data

to the model is summarized by charting the SPE, T2, and scores on the individual factors.

In all cases limits are shown based on 99% confidence intervals. Wafers outside the 99%

limits are marked with an asterisk. The batch scores for the wafers can be viewed as a

bivariate plot as shown in Figure 7. Here the test wafers are marked with an asterisk. The

pressure faults and TCP Top Power fault are very obvious. When the source of the fault is

not known, it is possible to interrogate the model by plotting the contribution to the residual

by variable over each of the wafers [14-16]. Plots for the two pressure faults are shown in

Figures 8 and 9. Residuals were collected over the variable dimension and are normalized

by their standard deviation over the calibration wafers. This puts all the variables on a scale

relative to their expected values. Limit lines are drawn for a 99% confidence assume they

are normally distributed (±2.58 standard deviations). The importance of retaining the sign

of the deviation is evident in the plots, the pattern in the fault where the pressure is too low

is primarily the negative of the one where the pressure was too high. These contributions

can be easily interpreted in these cases. If the overall pressure is too high, but the pressure

sensor reads normally (the Pr+3 fault, Figure 8) the Vat Valve position has a large negative

residual because it is not open nearly as far as it should be given the values of the other
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variables, including the apparent pressure. Other faults can be much more difficult to

interpret, but with knowledge of the physics of the system, they can often be understood.

Because PARAFAC2 fits the time loadings to each batch, these traces can also be

compared to the calibration data. This is shown in Figure 10. Here the traces from the test

data are shown with the limits derived from the mean of the calibration traces ±2.58

standard deviations. The traces of the test data fit largely within the calibration data though

some overall deviations in the shape are apparent for some of the wafers.

8. RESULTS AND DISCUSSION

The results of the fault detection tests are shown in Table 2. The data sets

considered are listed along the left side. The “Global” results refer to building models on

data from all three experiments while “Local” refers to building separate models for each

experiment. Results reported in [4] for TLD, PARAFAC, MPCA and PCA on the wafer

mean are included for comparison. (Note, however, that T2 was not used on TLD and

PARAFAC scores.) For a fault to be detected, the SPE, T2 or one of the factor scores was

outside the calculated 99% limits. Values in the table are the number of faults caught out of

the 20 available (fault wafers with all three sensor sets available). In general, the sensitivity

of the PARAFAC2 models was very similar to the methods discussed in Wise et al. [4],

somewhat more sensitive than MPCA, and not as sensitive as PARAFAC, though not

significantly so.

Table 2. Faults Caught by PARAFAC2 Compared with TLD, PARAFAC, MPCA
and PCA on the Means.

TLD PARAFAC MPCA PCA/Means PARAFAC2
Global Machine 11 12 10 10 7

RFM 7 6 11 9 12
OES 9 6 6 5 8

Local Machine 14 17 11 16 13
RFM 12 14 14 12 11
OES 12 11 6 13 11

Means 10.8 11.0 9.7 10.8 10.3

It is apparent that PARAFAC2 is slightly less sensitive than PARAFAC. This is

evidently due to the additional flexibility of the model, which allows for significant

deviation in the characteristic time behavior of the process. In fact, if fitted time profiles are

not considered, PARAFAC2 would allow for complete reordering of the data records

without indicating a fault. This is a potential drawback of the method. However, like the
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availability of the fitted time profiles is very useful as it provides much diagnostic

information with regard to the trajectory of the particular batch. This is not available in

MPCA, TLD and PARAFAC, though residuals collected across time points may provide

similar information. The biggest single advantage of PARAFAC2 is its ability to deal with

data records of different length in a “natural” way without requiring preprocessing of the

data.
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Machine Data Normal Wafers.
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Figure 8. Contribution Plot for Wafer with 3 Torr Positive Pressure Fault.
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Figure 9. Contribution Plot for Wafer with 2 Torr Negative Pressure Fault.
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Figure 10. Fitted Time Profiles for Test Wafers with Range of Calibration Wafers Shown.


