

Multivariate Analysis for TOF-SIMS

©Copyright 1996-2007 Eigenvector Research, Inc. No part of this material may be photocopied or reproduced in any form without prior written consent from Eigenvector Research, Inc.

Contact Information

Eigenvector Research, Inc.

3905 West Eaglerock Drive Wenatchee, WA 98801 USA web: www.eigenvector.com

Barry M. Wise, Ph.D. President e-mail: bmw@eigenvector.com phone: 509-662-9213

1

Washington State

Outline

- Thinking Multivariate
- General Principles
- Data Sets
- Pattern Recognition with Principal Components Analysis
- Preprocessing
- Supervised Pattern Recognition: Classification
- Analysis of Multivariate Images
- Self Modeling Mixture Analysis, aka Curve Resolution
- Clustering
- Conclusions

Definition of Chemometrics

Chemometrics is the chemical discipline that uses mathematical and statistical methods to 1) relate *measurements* made on a *chemical* system to the *state* of the system
2) design or select optimal *measurement* procedures and experiments.

Multivariate Analysis

Multivariate Statistical Analysis is concerned with data that consists of *multiple measurements* on a number of individuals, objects, or data samples. The measurement and analysis of *dependence between variables* is fundamental to multivariate analysis.

Information Hierarchy

Principal Component Scores

Monitor Single T² Chart

General Principles

- Balance
 - "Let the data speak for itself" Bruce Kowalski
 - "Don't estimate what you already know" John MacGregor
- Easier to fit data than predict it
 - Remember the parsimony principle
 - Validate models on independent test sets
- What you do before PCA, PLS etc. is critical
 - Experimental design, sample pedigree
 - Preprocessing to eliminate unwanted variance

Example Data Set 1

- Tyrosine-derived polyarylates
 - From polymerization of diacids and diphenols
 - Backbone length varied (X)
 - Pendent (side) chain length varied (Y)

Example Data Set 2

- Multilayer drug beadcontrolled release delivery system
- TOF-SIMS taken of cross section of bead
- Evaluate integrity of layers, distribution of consituents

Thanks to Anna Belu!

A.M. Belu et. al., "TOF-SIMS Characterization and Imaging of Controlled-Release Drug Delivery Systems, *Anal. Chem.*, **72**(22), pps 5625-5638, 2000.

Principal Components Analysis

PCA

PCA Math 1 of 2

For a data matrix \mathbf{X} with m samples and n variables (generally assumed to be mean centered and properly scaled), the PCA decomposition is:

 $\mathbf{X} = \mathbf{t}_1 \mathbf{p}_1^{\mathrm{T}} + \mathbf{t}_2 \mathbf{p}_2^{\mathrm{T}} + \dots + \mathbf{t}_k \mathbf{p}_k^{\mathrm{T}} + \dots + \mathbf{t}_q \mathbf{p}_q^{\mathrm{T}}$

Where $q \le \min\{m,n\}$, and the $\mathbf{t}_i \mathbf{p}_i^T$ pairs are ordered by the amount of variance captured.

Generally, the model is truncated, leaving some small amount of variance in a residual matrix:

$$\mathbf{X} = \mathbf{t}_1 \mathbf{p}_1^{\mathrm{T}} + \mathbf{t}_2 \mathbf{p}_2^{\mathrm{T}} + \dots + \mathbf{t}_k \mathbf{p}_k^{\mathrm{T}} + \mathbf{E} = \mathbf{T}_k \mathbf{P}_k^{\mathrm{T}} + \mathbf{E}$$

PCA Math 2 of 2

The \mathbf{p}_i are eigenvectors of the covariance matrix of \mathbf{X}

$$\operatorname{cov}(\mathbf{X}) = \frac{\mathbf{X}^{\mathrm{T}}\mathbf{X}}{\mathrm{m}-1}$$

$$\operatorname{cov}(\mathbf{X})\mathbf{p}_{i} = \lambda_{i}\mathbf{p}_{i}$$

and λ_i are eigenvalues.

Amount of variance captured by $t_i p_i^{T}$ proportional to λ_i .

Properties of PCA

- **t**_i,**p**_i ordered by amount of *variance captured*
- **t**_i or *scores* form an orthogonal set **T**_k which describe relationship between *samples*
- **p**_i or *loadings* form an orthonormal set **P**_k which describe relationship between *variables*
- scores and loadings plots are interpreted in pairs
 - *e.g.* plot \mathbf{t}_i vs sample number and \mathbf{p}_i vs variable number
- it is useful to plot \mathbf{t}_{i+1} vs. \mathbf{t}_i and \mathbf{p}_{i+1} vs. \mathbf{p}_i

Variable Loadings, p_i

Log-decay, Normalize, Mean-Center

How Does it Work on the Test Set?

Geometry of Q and T²

Supervised Pattern Recognition

- A single PCA model worked fine to visually classify arylates for backbone length
- PCA models could be built of each class (SIMCA)
- Fairly obvious this would work well

Apply SIMCA to Arylate for Sidechain?

- Doesn't work because major variation in spectra (with this scaling) due to backbone, not side chain
- Try discriminant analysis instead

Partial Least Squares Discriminant Analysis (PLS-DA)

- Use PLS regression to determine axis to project data on that discriminates between classes
 - choose axis so individual distributions are narrow
 - choose axis so centers of distributions are far apart
- PLS is factor-based model of data therefore more stable with high collinearity.
- Will automatically attempt to identify directions of interest!

PLS-DA for Sidechain Length

Image PCA

- SIMS images contain complete spectra for each pixel
- Use PCA to condense information from all channels down
- Use "scores" instead of single channels

Matricizing or Unfolding

Refold Results from PCA

Total Ion Image of Bead

Scores on First PC

40 EIGENVECTOR 40

Scores on Second PC

Scores and Loads on Second vs. First PC

Problem: Not Much Contrast!

Contrast Enhanced Scores on PC 1

 Scores on PC#1

 Image: product of the product o

Histogram of PC1 Scores Afer Contrast Enhancement

Contrast Enhanced Scores on PC 2

Contrast Enhanced Scores on PC 3

Contrast Enhanced False Color Image

Ease Color Image of First 3

Maximal Autocorrelation Factors (MAF)

- ◆ Regular image PCA does not take any spatial correlations into account, just captures variance
- ◆ MAF finds factors which capture large amounts of variance and produce correlated scores in the image plane
- Result is that features with large spatial correlations move up in model

PVA Image Data PCA vs. MAF Score Images

Component 2

MCR Objective

- Decompose a data matrix into chemically meaningful factors
 - pure analyte spectra
 - pure analyte concentrations
- Easy to interpret
 - provides chemically / physically meaningful information
 - caveats:
 - rotational and multiplicative ambiguity
 - · use of constraints

MCR

• Based on the classical least squares (CLS) model, attempt to estimate C and S given X:

$\mathbf{X} = \mathbf{C}\mathbf{S}^T + \mathbf{E}$

where

X is a *M*x*N* matrix of measured responses,

C is a *M*x*K* matrix of pure analyte contributions,

S is a NxK matrix of pure analyte spectra, and

E is a *M*x*N* matrix of residuals.

Also called Self-modeling Mixture Analysis

Alternating Least Squares

- How can we improve estimates of **S** and **C**?
- Given initial guess S_0 (or C_0)...

$$\mathbf{C}_{i} = \mathbf{X}\mathbf{S}_{i-1}(\mathbf{S}_{i-1}^{\mathsf{T}}\mathbf{S}_{i-1})^{-1}$$
$$\mathbf{S}_{i} = (\mathbf{C}_{i}^{\mathsf{T}}\mathbf{C}_{i})^{-1}\mathbf{C}_{i}^{\mathsf{T}}\mathbf{X}$$

- Iterate until convergence (ALS)
 - Usually constrained such that C>0 and S>0
 - and each $\mathbf{s}_k^T \mathbf{s}_k = 1$

Initial Estimate

- Try to find "extreme" samples/pixels
- Or look for "extreme" variables

MCR (ALS) on TOF-SIMS Image

- Non-negative constraints on both C and S
- Initialize with pure samples (i.e. pixels)
- Recover 6 interpretable spectra and concentration profiles
- Showing Score Images image was unfolded with each pixel as a separate sample then the scores are re-folded to form images

RGB "Chemical" Image

Red: Surelease (bead coating)	
Green: Na	50
Blue: Prednisolone (drug)	100
only 3 of 6 factors extracted	150
are shown	200

k-Means Agglomerative Clustering

- Samples are paired with another sample or a cluster one-at-a-time
- Position of each cluster is mean of all samples in cluster.
- Recalculation of distance can take a long time with lots of samples

KNN vs. K-Means

Two clusters are grouped together when...

KNN

...two of their members are the closest of all dissimilar samples

X = cluster mean

Note: these rules apply even when one of the "groups" is a single sample in a group of its own.

k-Means Partitional Clustering

- Choose k samples as cluster "targets"
 - random selection of samples
 - "pure samples": choose samples on outside of data (furthest from all other samples)
- Classify all samples into one of those k clusters.
- Calculate mean of each cluster's samples
- Repeat classification and cluster means until no samples are re-classed after mean recalculation.
- Much faster, but dependent on initial guess of samples

Avicel by k-means Clustering

False-color MCR Results

Pure Pixel Clusters

(3 clusters)

Why Multivariate and Factor Based Methods?

- Noise filtering
- Selectivity enhancement
- Interpretation
- It's a multivariate world!

Chemometrics Software

Advanced Chemometric Software at Your Command

Eigenvector offers a range of prepackaged and custom software products. Both as add-ond to MATLAB and as stand-alone software.

PLS_Toolbox 4.0 Solo 4.0

Model_Exporter 1.0

MIA_Toolbox 1.0

EMSC_Toolbox 1.0

Resources

Books

- Chemometrics, M.A. Sharaf, D.L. Illman and B.R. Kowalski, Wiley-Interscience (1986) ISBN 0-471-83106-9
- Multivariate Analysis, K.V. Mardia, J.I. Kent and J.M. Bibby, Academic Press, (1979) ISBN 0-12-471252-2
- Multivariate Calibration, H. Martens and T. Næs, John Wiley & Sons Ltd. (1989) ISBN 0-471-90979-3
- Chemometrics: a textbook, D.L. Massart et al., Elsevier (1988) ISBN 0-444-42660-4
- Chemometrics: A Practical Guide, K.R. Beebe, R.J. Pell, M.B. Seasholtz, Wiley (1998) ISBN 0-471-12451-6
- Multivariate Data Analysis In Practice, Kim H. Esbensen, CAMO ASA (2000), ISBN 82-993330-2-4
- A user-friendly guide to Multivariate Calibration and Classification, T. Næs, T. Isaksson, T. Fearn, T. Davies, NIR Publications(2002), ISBN 0-9528666-2-5
- Multivariate Image Analysis, Paul Geladi and Hans Grahn, Wiley (1996), ISBN 0-471-93001-6
- Multivariate Analysis of Quality: An Introduction, H. Martens and M. Martens, Wiley (2001), ISBN 0-471-97428-5
- Journals
- Journal of Chemometrics
- · Chemometrics and Intelligent Laboratory Systems
- Analytical Chemistry
- Analytica Chemica Acta
- Applied Spectroscopy
- Critical Reviews in Analytical Chemistry
- Journal of Process Control
- Computers in Chemical Engineering
- Technometrics
- ...

