

Multivariate Analysis for TOF-SIMS

©Copyright 1996-2007
Eigenvector Research, Inc.
No part of this material may be
photocopied or reproduced in any form without prior written consent from Eigenvector Research, Inc.

Contact Information

Eigenvector Research, Inc.
3905 West Eaglerock Drive
Wenatchee, WA 98801 USA
web: www.eigenvector.com

Barry M. Wise, Ph.D.
President
e-mail: bmw@eigenvector.com
phone: 509-662-9213

United States

Washington State

Eigenvector 4
EA RESEARCH INCORPORATED

Outline

- Thinking Multivariate
- General Principles
- Data Sets
- Pattern Recognition with Principal Components Analysis
- Preprocessing
- Supervised Pattern Recognition: Classification
- Analysis of Multivariate Images
- Self Modeling Mixture Analysis, aka Curve Resolution
- Clustering
- Conclusions

Definition of Chemometrics

Chemometrics is the chemical discipline that uses mathematical and statistical methods to

1) relate measurements made on a chemical system to the state of the system 2) design or select optimal measurement procedures and experiments.

EA

Multivariate Analysis

Multivariate Statistical Analysis is concerned with data that consists of multiple measurements on a number of individuals, objects, or data samples. The measurement and analysis of dependence between variables is fundamental to multivariate analysis.

Information Hierarchy

Motivation: Which Point is Most Unique?

X2 with 95\% Confidence Limits

Plot X2 versus X1

A EIGENVECTOR RESEARCH INCORPORATED

Principal Component Scores

A. RESERCCH wCORFORATED

Monitor Single T^{2} Chart

General Principles

- Balance
- "Let the data speak for itself" - Bruce Kowalski
- "Don't estimate what you already know" - John MacGregor
- Easier to fit data than predict it
- Remember the parsimony principle
- Validate models on independent test sets
- What you do before PCA, PLS etc. is critical
- Experimental design, sample pedigree
- Preprocessing to eliminate unwanted variance

Example Data Set 1

- Tyrosine-derived polyarylates
- From polymerization of diacids and diphenols
- Backbone length varied (X)
- Pendent (side) chain length varied (Y)

Example Data Set 2

- Multilayer drug beadcontrolled release delivery system
- TOF-SIMS taken of cross section of bead
- Evaluate integrity of layers, distribution of consituents

Thanks to Anna Belu!
A.M. Belu et. al., "TOF-SIMS Characterization and Imaging of Controlled-Release Drug Delivery Systems, Anal. Chem., 72(22), pps 5625-5638, 2000

Principal Components Analysis

PCA

- Geometry for 2 variables

Variable 1

EA EIGENVECTOR

City Streets Analogy

Puget Sound

PCA Math 1 of 2

For a data matrix \mathbf{X} with m samples and n variables (generally assumed to be mean centered and properly scaled), the PCA decomposition is:

$$
\mathbf{X}=\mathbf{t}_{1} \mathbf{p}_{1}^{\mathrm{T}}+\mathbf{t}_{2} \mathbf{p}_{2}^{\mathrm{T}}+\ldots+\mathbf{t}_{\mathrm{k}} \mathbf{p}_{\mathrm{k}}{ }^{\mathrm{T}}+\ldots+\mathbf{t}_{\mathrm{q}} \mathbf{p}_{\mathrm{q}}^{\mathrm{T}}
$$

Where $\mathrm{q} \leq \min \{\mathrm{m}, \mathrm{n}\}$, and the $\mathbf{t}_{\mathbf{i}} \mathbf{p}_{\mathrm{i}}{ }^{\mathrm{T}}$ pairs are ordered by the amount of variance captured.

Generally, the model is truncated, leaving some small amount of variance in a residual matrix:

$$
\mathbf{X}=\mathbf{t}_{1} \mathbf{p}_{1}{ }^{\mathrm{T}}+\mathbf{t}_{2} \mathbf{p}_{2}^{\mathrm{T}}+\ldots+\mathbf{t}_{\mathrm{k}} \mathbf{p}_{\mathrm{k}}{ }^{\mathrm{T}}+\mathbf{E}=\mathbf{T}_{\mathrm{k}} \mathbf{P}_{\mathrm{k}}^{\mathrm{T}}+\mathbf{E}
$$

PCA Math 2 of 2

The \mathbf{p}_{i} are eigenvectors of the covariance matrix of \mathbf{X}

$$
\begin{aligned}
& \operatorname{cov}(\mathbf{X})=\frac{\mathbf{X}^{\mathrm{T}} \mathbf{X}}{\mathrm{~m}-1} \\
& \operatorname{cov}(\mathbf{X}) \mathbf{p}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathbf{p}_{\mathrm{i}}
\end{aligned}
$$

and λ_{i} are eigenvalues.
Amount of variance captured by $\mathbf{t}_{\mathbf{i}} \mathbf{p}_{\mathrm{i}}{ }^{\mathrm{T}}$ proportional to λ_{i}.

Properties of PCA

- $\mathbf{t}_{\mathbf{i}}, \mathbf{p}_{\mathbf{i}}$ ordered by amount of variance captured
- $\mathbf{t}_{\mathbf{i}}$ or scores form an orthogonal set \mathbf{T}_{k} which describe relationship between samples
- \mathbf{p}_{i} or loadings form an orthonormal set \mathbf{P}_{k} which describe relationship between variables
- scores and loadings plots are interpreted in pairs
- e.g. plot $\mathbf{t}_{\mathbf{i}}$ vs sample number and \mathbf{p}_{i} vs variable number
- it is useful to plot \mathbf{t}_{i+1} vs. \mathbf{t}_{i} and $\mathbf{p}_{\mathrm{i}+1}$ vs. \mathbf{p}_{i}

Variable Loadings, p_{i}

Sample Scores, t_{i}

Arylate Data

PCA of Mean-centered Arylate

Percent Variance Captured by PCA Model

EIGENVECTOR 25
EAU RESEARCH INCORPORATED

Log-decay Scaling
Raw Data

EIGENVECTOR RESEARCH INCORPORATED

PCA with Log-decay, MC

Percent Variance Captured by PCA Model

Can we do better? Normalize?

EIGENVECTOR 27

Log-decay, Normalize, Mean-Center

Percent Variance Captured by PCA Model

How Does it Work on the Test Set?

Check residuals!

Geometry of Q and T²

Supervised Pattern Recognition

- A single PCA model worked fine to visually classify arylates for backbone length
- PCA models could be built of each class (SIMCA)
- Fairly obvious this would work well

Apply SIMCA to Arylate for Sidechain?

- Doesn't work because major variation in spectra (with this scaling) due to backbone, not side chain
- Try discriminant analysis instead

EIGENVECTOR
RESEARCH INCORPORATED

Partial Least Squares Discriminant Analysis (PLS-DA)

- Use PLS regression to determine axis to project data on that discriminates between classes
- choose axis so individual distributions are narrow
- choose axis so centers of distributions are far apart
- PLS is factor-based model of data therefore more stable with high collinearity.
- Will automatically attempt to identify directions of interest!

PLS-DA for Sidechain Length

samplesicores fiot or aryare_cai,c a aryare_cest,
Calibration and test samples shown

Image PCA

- SIMS images contain complete spectra for each pixel
- Use PCA to condense information from all channels down
- Use "scores" instead of single channels

Perform PCA on Unfolded Data

Refold Results from PCA

RESEARCH INCORPORATED

Total Ion Image of Bead

EIGENVECTOR ${ }_{3}$
EAV RESEARCH INCORPORATED

Scores on First PC

RESEARCH INCORPORATED

Scores on Second PC

Scores and Loads on Second vs. First PC

Problem: Not Much Contrast!

Contrast Enhanced Scores on PC 1

Scores on PC\# 1

PEIGENVECTOR
EAN RESEARCH INCORPORATED

Histogram of PC1 Scores Afer Contrast Enhancement

Contrast Enhanced Scores on PC 2

 RESEARCH INCORPORATED

Contrast Enhanced Scores on PC 3

Contrast Enhanced False Color Image

相 EIGENVECTOR
EA RESEARCH INCORPORATED

Maximal Autocorrelation Factors (MAF)

- Regular image PCA does not take any spatial correlations into account, just captures variance
- MAF finds factors which capture large amounts of variance and produce correlated scores in the image plane
- Result is that features with large spatial correlations move up in model

PVA Image Data PCA vs. MAF Score Images

MCR Objective

- Decompose a data matrix into chemically meaningful factors
- pure analyte spectra
- pure analyte concentrations
- Easy to interpret
- provides chemically / physically meaningful information
- caveats:
- rotational and multiplicative ambiguity
- use of constraints

MCR

- Based on the classical least squares (CLS) model, attempt to estimate \mathbf{C} and \mathbf{S} given \mathbf{X} :
$\mathbf{X}=\mathbf{C S}^{T}+\mathbf{E}$
where
\mathbf{X} is a $M \mathrm{x} N$ matrix of measured responses,
\mathbf{C} is a $M \mathrm{x} K$ matrix of pure analyte contributions, \mathbf{S} is a $N \mathrm{x} K$ matrix of pure analyte spectra, and \mathbf{E} is a $M \mathrm{x} N$ matrix of residuals.

Alternating Least Squares

- How can we improve estimates of \mathbf{S} and \mathbf{C} ?
- Given initial guess \mathbf{S}_{0} (or \mathbf{C}_{0})...

$$
\begin{aligned}
& \mathbf{C}_{i}=\mathbf{X} \mathbf{S}_{i-1}\left(\mathbf{S}_{i-1}{ }^{\mathrm{T}} \mathbf{S}_{i-l}\right)^{-1} \\
& \mathbf{S}_{i}=\left(\mathbf{C}_{i}{ }^{\mathrm{T}} \mathbf{C}_{i}\right)^{-1} \mathbf{C}_{i}^{\mathrm{T}} \mathbf{X}
\end{aligned}
$$

- Iterate until convergence (ALS)
- Usually constrained such that $\mathbf{C}>0$ and $\mathbf{S}>0$
- and each $\mathbf{s}_{k}{ }^{T} \mathbf{s}_{k}=1$

Initial Estimate

- Try to find "extreme" samples/pixels
- Or look for "extreme" variables

MCR (ALS) on TOF-SIMS Image

- Non-negative constraints on both C and S
- Initialize with pure samples (i.e. pixels)
- Recover 6 interpretable spectra and concentration profiles
- Showing Score Images - image was unfolded with each pixel as a separate sample then the scores are re-folded to form images

56

57

38

RGB "Chemical" Image

Red: Surelease (bead coating)
Green: Na
Blue: Prednisolone (drug)

only 3 of 6 factors extracted are shown

A EIGENVECTOR s.

k-Means Agglomerative Clustering

- Samples are paired with another sample or a cluster one-at-atime
- Position of each cluster is mean of all samples in cluster.
- Recalculation of distance can take a long time with lots of samples

KNN vs. K-Means

Two clusters are grouped together when...

KNN
...two of their members are the closest of all dissimilar samples

Note: these rules apply even when one of the "groups" is a single sample in a group of its own.

K-Means
...the cluster means are the closest of all cluster means

k-Means Partitional Clustering

- Choose k samples as cluster "targets"
- random selection of samples
- "pure samples": choose samples on outside of data (furthest from all other samples)
- Classify all samples into one of those k clusters.
- Calculate mean of each cluster's samples
- Repeat classification and cluster means until no samples are re-classed after mean recalculation.
- Much faster, but dependent on initial guess of samples

Avicel by k-means Clustering

False-color MCR Results

Pure Pixel Clusters

(3 clusters)

RESEARCH INCORPORATED

Why Multivariate and Factor Based Methods?

- Noise filtering
- Selectivity enhancement
- Interpretation
- It's a multivariate world!

Eigenvector offers a range of prepackaged and custom software products. Both as add-ond to MATLAB and as stand-alone software.

PLS_Toolbox 4.0
Solo 4.0
Model_Exporter 1.0
MIA_Toolbox 1.0
EMSC_Toolbox 1.0

Resources

- Books

- Chemometrics, M.A. Sharaf, D.L. Illman and B.R. Kowalski, Wiley-Interscience (1986) ISBN 0-471-83106-9
- Multivariate Analysis, K.V. Mardia, J.I. Kent and J.M. Bibby, Academic Press, (1979) ISBN 0-12-471252-2
- Multivariate Calibration, H. Martens and T. Næs, John Wiley \& Sons Ltd. (1989) ISBN 0-471-90979-3
- Chemometrics: a textbook, D.L. Massart et al., Elsevier (1988) ISBN 0-444-42660-4
- Chemometrics: A Practical Guide, K.R. Beebe, R.J. Pell, M.B. Seasholtz, Wiley (1998) ISBN 0-471-12451-6
- Multivariate Data Analysis In Practice, Kim H. Esbensen, CAMO ASA (2000), ISBN 82-993330-2-4
- A user-friendly guide to Multivariate Calibration and Classification, T. Næs, T. Isaksson, T. Fearn, T. Davies, NIR Publications(2002), ISBN 0-9528666-2-5
- Multivariate Image Analysis, Paul Geladi and Hans Grahn, Wiley (1996), ISBN 0-471-93001-6
- Multivariate Analysis of Quality: An Introduction, H. Martens and M. Martens, Wiley (2001), ISBN 0-471-97428-5
- Journals
- Journal of Chemometrics
- Chemometrics and Intelligent Laboratory Systems
- Analytical Chemistry
- Analytica Chemica Acta
- Applied Spectroscopy
- Critical Reviews in Analytical Chemistry
- Journal of Process Contro
- Computers in Chemical Engineering
- Technometrics
....

