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Outline

e Thinking Multivariate

* General Principles

* Data Sets

* Pattern Recognition with Principal Components Analysis
* Preprocessing

* Supervised Pattern Recognition: Classification

* Analysis of Multivariate Images

* Self Modeling Mixture Analysis, aka Curve Resolution

* Clustering

* Conclusions
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Definition of Chemometrics

Chemometrics is the chemical discipline that
uses mathematical and statistical methods to
1) relate measurements made on a chemical
system to the state of the system
2) design or select optimal measurement
procedures and experiments.
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Multivariate Analysis

Multivariate Statistical Analysis is
concerned with data that consists of
multiple measurements on a number of
individuals, objects, or data samples. The
measurement and analysis of dependence
between variables is fundamental to
multivariate analysis.
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Information Hierarchy

Understanding
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Motivation: Which Point is

Variable X1

Variable X2

Variable X2

Most Unique?

X1 with 95% Confidence Limits
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Principal Component Scores

Principal Component Scores with 95% and 99% T 2 Ellipse
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Monitor Single T? Chart

T2 Value vs. Time with 95% and 99% Confidence Limits
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General Principles

e Balance

* “Let the data speak for itself” - Bruce Kowalski

* “Don’t estimate what you already know” - John
MacGregor

 Easier to fit data than predict it
e Remember the parsimony principle
* Validate models on independent test sets
* What you do before PCA, PLS etc. is critical
* Experimental design, sample pedigree
* Preprocessing to eliminate unwanted variance
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Example Data Set 1

» Tyrosine-derived polyarylates
» From polymerization of diacids and diphenols
» Backbone length varied (X)
» Pendent (side) chain length varied (Y)

Diphenol Diacid

R R OR
— CH2— CHz  C— NH— C‘H*CHQ C (CH2xC

i
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CyH@2Y+1)
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Example Data Set 2

e Multilayer drug bead-
controlled release delivery 58
system

e TOF-SIMS taken of cross
section of bead 150

100

» Evaluate integrity of layers,
distribution of consituents

250

50 100 150 200 250

Thanks to Anna Belu!

AM. Belu et. al., “TOF-SIMS Characterization and Imaging of
Controlled-Release Drug Delivery Systems, Anal. Chem., 72(22), romm
pps 5625-5638, 2000. =’,‘- ElGE NVECTO R 15
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Principal Components
Analysis

Variable 3

Jaran® 3
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PCA

* Geometry for 2 variables
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PCA Math 1 of 2

For a data matrix X with 7 samples and » variables (generally
assumed to be mean centered and properly scaled), the PCA
decomposition is:

X=tp +tp, +..+tp"+..+tp’

Where q < min{m,n}, and the t,;p;T pairs are ordered by the
amount of variance captured.

Generally, the model is truncated, leaving some small amount
of variance in a residual matrix:

X=tp "+tp,+..+tp"+E=TP"+E

=~
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PCA Math 2 of 2

variables

I ] ]
p1 P2 Px
X 8] L&) + .+ ti + E

samples

The p, are eigenvectors of the covariance matrix of X
XX

cov(X) =

cov(X)p; = Ap;
and 2, are eigenvalues.
Amount of variance captured by tp.r proportional to A;.
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Properties of PCA

t.,p; ordered by amount of variance captured

t; or scores form an orthogonal set T, which
describe relationship between samples

p, or loadings form an orthonormal set P, which
describe relationship between variables

scores and loadings plots are interpreted in pairs
* e.g. plot t; vs sample number and p, vs variable number

it is useful to plot t,, vs. t, and p,,, vs. p;
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Variable Loadings, p,

X, PC1
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o © o loading for x,

o o
°o o p, = [3 2]°/sqrt(32 + 22)
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#ws EIGENVECTOR 2

EI‘EE RESEARCH INCORPORATED

11



Sample Scores, t
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Raw Data Mean-centered Data
TOF-SIMS of Arflate Data TOF-SIMS of Andate Data, Mean<Centered
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Counts (romalized)

PCA of Mean-centered Arylate

Percent Variance Captured by PCA Model

Principal Eigenvalue % Variance % Variance
Component of Captured Captured
Number Cov(X) This PC Total
1 8.58e-04 62.01 62.01
2 1.95e-04 14.11 76.13
3 1.65e-04 11.90 88.03
4 6.87e-05 4.97 92.99
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.. dttered

Log-decay Scaling

Raw Data
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PCA with Log-decay, MC

Percent Variance Captured by PCA Model

Principal Eigenvalue % Variance % Variance
Component of Captured Captured
Number Cov(X) This PC Total
1 3.47e-02 46.82 46.82
2 1.65e-02 22.17 68.99
3 9.71e-03 13.09 82.08
4 6.50e-03 8.75 90.83
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Can we do better? Normalize?
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Log-decay, Normalize, Mean-Center

Percent Variance Captured by PCA Model

Principal Eigenvalue % Variance % Variance
Component of Captured Captured
Number Cov(X) This PC Total
1 6.3%-02 43.77 43.77
2 3.72e-02 25.51 69.29
3 1.69e-02 11.59 80.88
4 1.40e-02 9.58 90.46

Variables/Loadings Plot for anate_cal
04 08 . . : - r T T
: 303 l
B8 | 1
03 08
| |
E | |
| |
0.2 0.4
- I = |
: : B%;”f? 4 : 213
g T v g
£ o : T 5 02 .304:
o T
& . | <*" E 405, ,.-23867
E __________ :_ 5 e ¥ s - i
& 4 3 1043
01 e 0.2 :
| |
m | |
B6 | 04 275 |
| |
03 | 08 . . . | . . \ . |
04 02 0 0.2 04 08 08 04 02 0 02 04 06 08 [
Scores on PC 1(43.77%) Loadings on PC 1(43.77%)
Decluttered

@WEIGENVECTOR

E‘\LE RESEARCH INCORPORATED

14



How Does it Work on the
Test Set?

Samples!Scores Plot of andate_cal & ardate_test,
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Check residuals!

Q Peziduals [8.54%)

Samples!Scores Plot of andate_cal & andate_test, .7
T T T T T T =
Tt SR St
vy . an 5;3 A6 w10
vy . agitil
#* .m mly ‘15” g
vy * * N wus's
*
S 10 15 20 25 30 35 40 45
Sample
w8 EIGENVECTOR
T 29

E@A4 RESEARCH INCORPORATED

Geometry of Q and T?

8 Sample with large Q -

Variable 3

Unusual variation outside the model

Sample With large T2
.. Unusual variation inside the model
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Supervised Pattern
Recognition

* A single PCA model worked fine to visually
classify arylates for backbone length

e PCA models could be built of each class (SIMCA)
 Fairly obvious this would work well

-
pe Class |
3 PCs
Class 2
| PC

weE EIGENVECTOR
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Apply SIMCA to Arylate for
Sidechain?

* Doesn’t work because major variation in spectra
(with this scaling) due to backbone, not side chain

e Try discriminant analysis instead

A

Projection onto axis

) @ EIGENVECTOR =
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Partial Least Squares Discriminant
Analysis (PLS-DA)

* Use PLS regression to determine axis to project
data on that discriminates between classes
¢ choose axis so individual distributions are narrow
* choose axis so centers of distributions are far apart
* PLS is factor-based model of data therefore more
stable with high collinearity.
* Will automatically attempt to identify directions
of interest!
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PLS-DA for Sidechain Length
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Decluttered ¥ Predicted 2 (Class 2)
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Image PCA

» SIMS images contain complete spectra for each
pixel

* Use PCA to condense information from all
channels down

» Use “scores” instead of single channels
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Matricizing or Unfolding

Unfolded Data

Original Data
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Perform PCA on Unfolded Data

—

Scores

®

Loadings

Scores in image plane

Residuals

-,w“ IGENVECTOR -
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Refold Results from PCA

Residuals
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Total lon Image of Bead
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Scores on First PC

Scores on PCH A
250
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Scaled 95 Percentlimits are 49.7028 and -15.8357
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Scores on Second PC

Scores on PC# 2

250

Scaled 9% Percentlimits are 147.639and 72,4101
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Scores and Loads on Second
vs. First PC
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Problem: Not Much Contrast!
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Contrast Enhanced Scores
onPC 1

Scores on PCA

250
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Scaled 95 Percentlimits are 49.?08 and -15.8557
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Histogram of PC1 Scores
Afer Contrast Enhancement

Histogram of First PC Scores after Contrast
T T T T T
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Contrast Enhanced Scores
on PC 2

Seores on PCH 2

250

200

Staled 95 Percent limits are 147.6
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Contrast Enhanced Scores
on PC 3

Scaled 9% Percentlimits are 174,155 and 121.31
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Contrast Enhanced False
Color Image

Falze Color Image of First 3
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Maximal Autocorrelation
Factors (MAF)

# Regular image PCA does not take any spatial
correlations into account, just captures variance

¢ MAF finds factors which capture large amounts
of variance and produce correlated scores in the
image plane

¢ Result is that features with large spatial
correlations move up in model

EIGENVECTOR "
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PVA Image Data
PCA vs. MAF Score Images
MAF

Component 1

Component 2
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MCR Objective

e Decompose a data matrix into chemically
meaningful factors
* pure analyte spectra
* pure analyte concentrations

e Easy to interpret

* provides chemically / physically meaningful
information
® caveats:
* rotational and multiplicative ambiguity
* use of constraints

[ A~
| 14
| )
L

F.adll

MCR
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* Based on the classical least squares (CLS) model,

attempt to estimate C and S given X:

X=CS"+E
where
X isa MxN matrix of measured responses,

C isa MxK matrix of pure analyte contributions,
S is a NxK matrix of pure analyte spectra, and

E isa MxN matrix of residuals.

=~

. . . romm
Also called Self-modeling Mixture Analysis El \H E IGENVECTOR s
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Alternating Least Squares

* How can we improve estimates of S and C?
e Given initial guess S, (or Cy)...
C, =XS.,(5./'S.p)"
S, =(CTC)'CTX
e TIterate until convergence (ALS)
¢ Usually constrained such that C>0 and S>0
¢ and eachs,’s,=1

|

#EEIGENVECTOR s
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Initial Estimate

e Try to find “extreme” samples/pixels

¢ Or look for “extreme” variables

Channel 2

12

1
08
0B} o

.
0.4

02

Channel 1
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MCR (ALS) on TOF-SIMS Image

* Non-negative constraints on both C and S
e Initialize with pure samples (i.e. pixels)

e Recover 6 interpretable spectra and concentration
profiles

e Showing Score Images — image was unfolded with
each pixel as a separate sample then the scores are
re-folded to form images

#EEIGENVECTOR s
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RGB “Chemical” Image

Red: Surelease (bead coating)

Blue: Prednisolone (dr

only 3 of 6 factors extracted
are shown
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41: “typical low mass
hydrocarbon” (CH,CH,CH.,)
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k-Means Agglomerative Clustering

» Samples are paired with another 1
sample or a cluster one-at-a- A 2
time
.. . 3 7
¢ Position of each cluster is mean o
of all samples in cluster. 45
* Recalculation of distance can 8\0
take a long time with lots of * 5
samples
w%= EIGENVECTOR
L2 RESEARCH INCORPORATED

KNN vs. K-Means

Two clusters are grouped together when...

K-Means

KNN
...two of their members are the ...the cluster means are the closest
of all cluster means

closest of all dissimilar samples

[ S BN
|| / | \
\
o ] | / | | u \
- v \\\\ || v i [ | \
/ RN | \
/ - / ,
LY . Y / |
4 v : /
v * 00 v \ * !
v &% S v \ /
A ~o \ \ /
~o 1 /
. Iy N 4

X = cluster mean

Note: these rules apply even when one of the

“groups” is a single sample in a group of its own. —
@SS EIGENVECTOR «
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k-Means Partitional Clustering

* Choose k samples as cluster “targets”
* random selection of samples

* “pure samples”: choose samples on outside of data
(furthest from all other samples)

 Classify all samples into one of those k clusters.
e Calculate mean of each cluster’s samples

» Repeat classification and cluster means until no
samples are re-classed after mean recalculation.

e Much faster, but dependent on initial guess of
samples

E’ %8 EIGENVECTOR
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Avicel by k-means Clustering

False-color MCR Results Pure Pixel Clusters

(3 clusters)
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Why Multivariate and Factor
Based Methods?

Noise filtering
Selectivity enhancement
Interpretation

It’s a multivariate world!
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Chemometrics Software

'A Advanced Chemometric Software at Your Command

Eigenvector offers a PLS_TOOIbOX 4.0
range of prepackaged SO]O 4. 0

and custom software

aad-ond tomatias  Model_Exporter 1.0

e o™ MIA_Toolbox 1.0
EMSC Toolbox 1.0

%EIGENVECTOR
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Resources

Books

Chemometrics, M.A. Sharaf, D.L. Illman and B.R. Kowalski, Wiley-Interscience (1986) ISBN 0-471-83106-9
Multivariate Analysis, K.V. Mardia, J.I. Kent and J.M. Bibby, Academic Press, (1979) ISBN 0-12-471252-2
Multivariate Calibration, H. Martens and T. Nes, John Wiley & Sons Ltd. (1989) ISBN 0-471-90979-3
Chemometrics: a textbook, D.L. Massart et al., Elsevier (1988) ISBN 0-444-42660-4

Chemometrics: A Practical Guide, K.R. Beebe, R.J. Pell, M.B. Seasholtz, Wiley (1998) ISBN 0-471-12451-6
Multivariate Data Analysis In Practice, Kim H. Esbensen, CAMO ASA (2000), ISBN 82-993330-2-4

A user-friendly guide to Multivariate Calibration and Classification, T. Ne&s, T. Isaksson, T. Fearn, T. Davies, NIR
Publications(2002), ISBN 0-9528666-2-5

Multivariate Image Analysis, Paul Geladi and Hans Grahn, Wiley (1996), ISBN 0-471-93001-6
Multivariate Analysis of Quality: An Introduction, H. Martens and M. Martens, Wiley (2001), ISBN 0-471-97428-5

Journals

Journal of Chemometrics

Chemometrics and Intelligent Laboratory Systems
Analytical Chemistry

Analytica Chemica Acta

Applied Spectroscopy

Critical Reviews in Analytical Chemistry

Journal of Process Control

Computers in Chemical Engineering
Technometrics

w8 EIGENVECTOR

|
AN\

NEE

RESEARCH INCORPORATED

35



