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• Thinking Multivariate
• General Principles
• Data Sets
• Pattern Recognition with Principal Components Analysis
• Preprocessing
• Supervised Pattern Recognition: Classification
• Analysis of Multivariate Images
• Self Modeling Mixture Analysis, aka Curve Resolution
• Clustering
• Conclusions

Outline
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Definition of Chemometrics

Chemometrics is the chemical discipline that
uses mathematical and statistical methods to
1) relate measurements made on a chemical

system to the state of the system
2) design or select optimal measurement

procedures and experiments.
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Multivariate Analysis

Multivariate Statistical Analysis is
concerned with data that consists of

multiple measurements on a number of
individuals, objects, or data samples. The
measurement and analysis of dependence

between variables is fundamental to
multivariate analysis.

8

Information Hierarchy

Understanding

Knowledge

Information

Data

Chemistry 
and 

Physics
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Motivation: Which Point is
Most Unique?
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Plot X2 versus X1
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Principal Component Scores
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Monitor Single T2 Chart
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General Principles

• Balance
• “Let the data speak for itself” - Bruce Kowalski
• “Don’t estimate what you already know” - John

MacGregor

• Easier to fit data than predict it
• Remember the parsimony principle
• Validate models on independent test sets

• What you do before PCA, PLS etc. is critical
• Experimental design, sample pedigree
• Preprocessing to eliminate unwanted variance
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Example Data Set 1

•  Tyrosine-derived polyarylates

• From polymerization of diacids and diphenols

• Backbone length varied (X)

• Pendent (side) chain length varied (Y)

CH 2 CH2 C

O

NH CH CH 2

C O

O

CYH(2Y+1)

O C

O

C

O

O (CH2)X

DiacidDiphenol

Thanks to Anna Belu!
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Example Data Set 2

• Multilayer drug bead-
controlled release delivery
system

• TOF-SIMS taken of cross
section of bead

• Evaluate integrity of layers,
distribution of consituents

Thanks to Anna Belu!

A.M. Belu et. al., “TOF-SIMS Characterization and Imaging of
Controlled-Release  Drug Delivery Systems, Anal. Chem., 72(22),
pps 5625-5638, 2000.
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PCA

• Geometry for 2 variables
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Where q  min{m,n}, and the tipi
T pairs are ordered by the 

amount of variance captured.

Generally, the model is truncated, leaving some small amount 
of variance in a residual matrix:

For a data matrix X with m samples and n variables (generally
assumed to be mean centered and properly scaled), the PCA
decomposition is:

X = t1p1
T + t2p2

T + ... + tkpk
T + ... + tqpq

T

X = t1p1
T + t2p2

T + ... + tkpk
T + E = TkPk

T + E

PCA Math 1 of 2

20

PCA Math 2 of 2

The pi are eigenvectors of the covariance matrix of X

1-m
  )cov(

T
XX

X =

iii   )cov( ppX =

and i are eigenvalues.

Amount of variance captured by tipi
T proportional to i.
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Properties of PCA
• ti,pi ordered by amount of variance captured

• ti or scores form an orthogonal set Tk which
describe relationship between samples

• pi or loadings form an orthonormal set Pk which
describe relationship between variables

• scores and loadings plots are interpreted in pairs
• e.g. plot ti vs sample number and pi vs variable number

• it is useful to plot ti+1 vs. ti and pi+1 vs. pi
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PC 1

p1 = [3 2]’/sqrt(3
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Sample Scores, ti
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= 2.4368
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Arylate Data
Raw Data Mean-centered Data

Autoscale?

Dominated by low mass peaks

Where are high mass peaks?
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PCA of Mean-centered Arylate
         Percent Variance Captured by PCA Model
  
Principal     Eigenvalue     % Variance     % Variance
Component         of          Captured       Captured
 Number         Cov(X)        This  PC        Total
---------     ----------     ----------     ----------
     1         8.58e-04         62.01          62.01
     2         1.95e-04         14.11          76.13
     3         1.65e-04         11.90          88.03
     4         6.87e-05          4.97          92.99

B2

B4

B6 B8

S2

S4

S6

S8
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Log-decay Scaling
Raw Data
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PCA with Log-decay, MC
        Percent Variance Captured by PCA Model
  
Principal     Eigenvalue     % Variance     % Variance
Component         of          Captured       Captured
 Number         Cov(X)        This  PC        Total
---------     ----------     ----------     ----------
     1         3.47e-02         46.82          46.82
     2         1.65e-02         22.17          68.99
     3         9.71e-03         13.09          82.08
     4         6.50e-03          8.75          90.83

B2

B4
B6

B8

Can we do better? Normalize?
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Log-decay, Normalize, Mean-Center
         Percent Variance Captured by PCA Model
  
Principal     Eigenvalue     % Variance     % Variance
Component         of          Captured       Captured
 Number         Cov(X)        This  PC        Total
---------     ----------     ----------     ----------
     1         6.39e-02         43.77          43.77
     2         3.72e-02         25.51          69.29
     3         1.69e-02         11.59          80.88
     4         1.40e-02          9.58          90.46

B2

B4

B6

B8
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How Does it Work on the
Test Set?

B2

B4

B6

B8

?

Check residuals!

?
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Geometry of Q and T2
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Sample with large Q -
Unusual variation outside the model

Sample with large T2

Unusual variation inside the model



16

31

Supervised Pattern
Recognition

• A single PCA model worked fine to visually
classify arylates for backbone length

• PCA models could be built of each class (SIMCA)

• Fairly obvious this would work well

32

Apply SIMCA to Arylate for
Sidechain?

• Doesn’t work because major variation in spectra
(with this scaling) due to backbone, not side chain

• Try discriminant analysis instead

Projection onto axis
X1

X2

X2
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Partial Least Squares Discriminant
Analysis (PLS-DA)

• Use PLS regression to determine axis to project
data on that discriminates between classes
• choose axis so individual distributions are narrow

• choose axis so centers of distributions are far apart

• PLS is factor-based model of data therefore more
stable with high collinearity.

• Will automatically attempt to identify directions
of interest!

34

PLS-DA for Sidechain Length

Calibration and test
samples shown
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Image PCA

• SIMS images contain complete spectra for each
pixel

• Use PCA to condense information from all
channels down

• Use “scores” instead of single channels

36
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PVA Image Data
PCA vs. MAF Score Images

PCA MAF

Component 1

Component 2
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MCR Objective
• Decompose a data matrix into chemically

meaningful factors
• pure analyte spectra
• pure analyte concentrations

• Easy to interpret
• provides chemically / physically meaningful

information
• caveats:

• rotational and multiplicative ambiguity
• use of constraints
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MCR

• Based on the classical least squares (CLS) model,
attempt to estimate C and S given X:

   

X = CS
T
+ E

where

X is a MxN  matrix of measured responses,

C is a MxK  matrix of pure analyte contributions,

S is a NxK  matrix of pure analyte spectra, and

E is a MxN  matrix of residuals.

Also called Self-modeling Mixture Analysis
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Alternating Least Squares
• How can we improve estimates of S and C?

• Given initial guess S0 (or C0)...

Ci = XSi-1(Si-1TSi-1)-1

Si = (Ci
TCi)-1Ci

T X
• Iterate until convergence (ALS)

• Usually constrained such that C>0 and S>0

• and each skTsk=1

Initial Estimate

• Try to find “extreme” samples/pixels

• Or look for “extreme” variables

C
h

an
n

el
 2

Channel 1
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MCR (ALS) on TOF-SIMS Image

• Non-negative constraints on both C and S

• Initialize with pure samples (i.e. pixels)

• Recover 6 interpretable spectra and concentration
profiles

• Showing Score Images – image was unfolded with
each pixel as a separate sample then the scores are
re-folded to form images
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RGB “Chemical” Image
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Red: Surelease (bead coating)

Green: Na

Blue: Prednisolone (drug)

only 3 of 6 factors extracted

are shown
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k-Means Agglomerative Clustering

1
2

3

4 5

6

7

• Samples are paired with another
sample or a cluster one-at-a-
time

• Position of each cluster is mean
of all samples in cluster.

• Recalculation of distance can
take a long time with lots of
samples
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KNN vs. K-Means
Two clusters are grouped together when…

KNN
…two of their members are the
closest of all dissimilar samples

x

x

x

K-Means
 …the cluster means are the closest

of all cluster means

x = cluster mean
Note: these rules apply even when one of the
“groups” is a single sample in a group of its own.
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k-Means Partitional Clustering
• Choose k samples as cluster “targets”

• random selection of samples
• “pure samples”: choose samples on outside of data

(furthest from all other samples)

• Classify all samples into one of those k clusters.
• Calculate mean of each cluster’s samples
• Repeat classification and cluster means until no

samples are re-classed after mean recalculation.
• Much faster, but dependent on initial guess of

samples
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Avicel by k-means Clustering

False-color MCR Results Pure Pixel Clusters

(3 clusters)
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Why Multivariate and Factor
Based Methods?

• Noise filtering

• Selectivity enhancement

• Interpretation

• It’s a multivariate world!
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Chemometrics Software
Advanced Chemometric Software at Your Command

Eigenvector offers a

range of prepackaged

and custom software

products. Both as

add-ond to MATLAB

and as stand-alone

software.
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• Journal of Chemometrics
• Chemometrics and Intelligent Laboratory Systems
• Analytical Chemistry
• Analytica Chemica Acta
• Applied Spectroscopy
• Critical Reviews in Analytical Chemistry
• Journal of Process Control
• Computers in Chemical Engineering
• Technometrics
• ....

70


