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Abstract

ADAPTING MULTIVARIATE ANALYSIS FOR MONITORING AND
MODELING OF DYNAMIC SYSTEMS

by Barry M. Wise

Chairperson of the Supervisory Committee: Professor N. Lawrence Ricker
Department of Chemical Engineering

This work considers the application of several related multivariate data analysis

techniques to the monitoring and modeling of dynamic processes.  Included are the method

of Principal Components Analysis (PCA), and the regression technique Continuum

Regression (CR), which encompasses Principal Components Regression (PCR), Partial

Least Squares (PLS) and Multiple Linear Regression (MLR), all of which are based on

eigenvector decompositions.  

It is shown that proper application of PCA to the measurements from multivariate

processes can facilitate the detection of failed sensors and process upsets.  The relationship

between PCA and the state-space process model form is shown, providing a theoretical

basis for the use of PCA in dynamic systems.  For processes with more measurements than

states, the deterministic variation in the output data is redundant and PCA modeling can be

applied.  Under these conditions the residuals of the PCA model are related only to the

process measurement noise; the state of the process does not affect the residuals.  Statistical

limits, which define the normal amount of process noise, can be calculated for the process

residuals.  Failed sensors or process upsets manifest themselves as changes in the PCA

residuals and can be detected through the application of statistical tests.

Collections of PLS models are used in a manner analogous to PCA for the failure

detection problem.  This technique can be more effective than PCA monitoring.  However,

the method suffers because, unlike PCA models, it maps state information into the

residuals.  Statistical limits on the residuals must account for this.  Changes in the process

inputs invalidates the calculated limits.

CR is applied to the identification of Finite Impulse Response (FIR) and Auto-

Regressive eXtensive variable (ARX) dynamic models.  In FIR identification, the

frequency domain effects of CR, and in particular PCR, are investigated from a theoretical

perspective.  This results in a fundamental understanding of the effects of CR on FIR

identification.  Observed trends in CR identification are consistent with the theoretical

understanding.  CR appears to be a great advantage over existing methods for the

identification of FIR models, but offers only moderate improvements for ARX models.   



TABLE OF CONTENTS

List of Figures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1.0 Introduction and Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 Motivation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Scope, Goals and Approach ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.3 Review:  The State of Process Fault and Upset Detection.. . . . . . . . . . . . .6
1.4 Review:  The State of Process Model Identification.. . . . . . . . . . . . . . . . . . . .7

2.0 Background ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.1 Principal Components Analysis (PCA)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

2.1.1 The PCA Method... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.1.2 The Q and T2 Statistics .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.1.3 Statistics Associated with PCA Residuals.. . . . . . . . . . . . . . . . . . .15

2.2 Principal Components Regression (PCR)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.2.1 Motivation for PCR... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.2.2 The PCR Method... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

2.3 Partial Least Squares (PLS) Regression.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.3.1 Motivation for PLS ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.3.2 The PLS Method ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.3.3 PLS and PCR with Non-Linear Inner Relationships .. . . . . .29

2.4 Continuum Regression .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.4.1 Motivation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.4.2 Continuum Regression Method ... . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

2.5 Data Pretreatment and Scaling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.5.1 Types of Scaling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.5.2 Outliers Analysis .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
2.5.3 Linearization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

2.6 Statistical Process Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2.7 Process Models.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

2.7.1 State-Space Models .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
2.7.2 Finite Impulse Response (FIR) Models .. . . . . . . . . . . . . . . . . . . . .43
2.7.3 Auto-Regressive Extensive Variable (ARX) Models .. . . . . .45

2.8 Common Process Model Identification Methods .. . . . . . . . . . . . . . . . . . . . . . .46
2.8.1 FIR Model Identification .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
2.8.2 MLR and Instrumental Variables for ARX Models .. . . . . . . .48

2.9 The Liquid-Fed Ceramic Melter .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

3.0 Process Monitoring with PCA ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
3.1 A Theoretical Basis for PCA Monitoring.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

3.1.1 Immediately Observable States .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
3.1.2 The Basis for PCA Monitoring.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
3.1.3 Obtaining an Accurate Estimate of Pq.. . . . . . . . . . . . . . . . . . . . . . . .59
3.1.4 Using the PCA Residuals .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

3.2 Some Examples of PCA Monitoring.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
3.2.1 PCA Monitoring Example Using Synthetic Data.. . . . . . . . . . .60
3.2.2 PCA Monitoring Example Using LFCM Data.. . . . . . . . . . . . . .65

3.3 Effect of Scaling on PCA Monitoring.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
3.4 Treating Autocorrelation in PCA Residuals .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .70



i

ii

3.5 Robust PCA for Multiple Failures.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
3.6 Conclusions Concerning PCA Monitoring.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

4.0 Process Monitoring with PLS ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
4.1 A Basis for PLS Monitoring .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
4.2 Generating and Using PCA-Like Residuals with PLS... . . . . . . . . . . . . . . .88
4.3 Comparison of PCA and PLS Monitoring .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

4.3.1 Examples with Synthetic Data .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
4.3.2 Examples with LFCM Data .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

4.4 Robust PLS for Multiple Failures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
4.5 Conclusions Concerning PLS and PCA Monitoring.. . . . . . . . . . . . . . . . . . .109

5.0 Dynamic Process Model Identification with CR ... . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
5.1 General Methodology... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
5.2 Continuum Regression for FIR Model Identification .. . . . . . . . . . . . . . . . . .112

5.2.1 Eigenvector Decomposition of the ACM .... . . . . . . . . . . . . . . . . .112
5.2.2 Frequency Domain Effects of PCR ... . . . . . . . . . . . . . . . . . . . . . . . .121
5.2.3 Effect of Filtering on ACM Decomposition.. . . . . . . . . . . . . . . . .126
5.2.4 Frequency Domain Effects of CR... . . . . . . . . . . . . . . . . . . . . . . . . . .128
5.2.5 Effect of Identification Conditions on FIR Modelling .. . . . .130

5.2.5.1 Effect of Process Measurement Noise.. . . . . . . . . . . . .131
5.2.5.2 Effect of Process Dynamics .. . . . . . . . . . . . . . . . . . . . . . . .134
5.2.5.3 Effect of Input Excitation Level .. . . . . . . . . . . . . . . . . . . .136
5.2.5.4 Effect of Time Delays .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
5.2.5.5 Effect of CR on FIR Coefficients.. . . . . . . . . . . . . . . . . .139

5.3 Continuum Regression for ARX Model Identification.. . . . . . . . . . . . . . . . .141
5.4 PCR and PLS for Non-Linear FIR Model Identification .. . . . . . . . . . . . . .148

5.4.1 Non-Linear Versions of PCR and PLS... . . . . . . . . . . . . . . . . . . . .148
5.4.2 An Example Using Non-Linear PCR and PLS... . . . . . . . . . . .149

5.5 Conclusions Concerning CR for Dynamic Modelling .. . . . . . . . . . . . . . . . .154

6.0 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
6.1 Process Monitoring with PCA... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
6.2 Process Monitoring with PLS ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
6.3 Continuum Regression for Process Modeling .. . . . . . . . . . . . . . . . . . . . . . . . . .159
6.4 Suggestions for Future Work... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

Appendix 1. Dynamic Process Investigation with PCA... . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
A1.1 PCA Study of Melter Foaming ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

A1.1.1 Review of Original Foaming Study... . . . . . . . . . . . . . . . . . . . . . . . .170
A1.1.2 Re-analysis of Foaming Study Data .. . . . . . . . . . . . . . . . . . . . . . . . .174

A1.2 PCA Analysis of SF-11: The Effect of Scaling.. . . . . . . . . . . . . . . . . . . . . . .178
A1.3 Assessment .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

Appendix 2. Equivalence of Replacement and Rebuilding.. . . . . . . . . . . . . . . . . . . . . . . . . . .189

Appendix 3. Comparison of t- and T2- Statistics .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193



i

v

LIST OF FIGURES

Figure 2.1. Example of Typical PRESS Plot.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Figure 2.2. Relationship Between Continuum Regression and PCR, PLS and
MLR. 31

Figure 2.3 Continuum Regression PRESS Surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Figure 2.4. Cumulative Sum Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

Figure 2.5. Schematic Drawing of Liquid-Fed Ceramic Melter.. . . . . . . . . . . . . . . . . . . . . . .51

Figure 3.1. Autocorrelation Function for Outputs and Residuals for Test Data
Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Figure 3.2. Detection Limits for Changes in Noise Mean and Standard
Deviation in Original Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Figure 3.3. Autocorrelation Function of SF-11 Data and 4 and 7 PC Model
Residuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Figure 3.4. Detection Limits for Changes in Mean Residual From Mean
Centered SF-11 Data Using 4 and 7 Principal Component Models. . . . .67

Figure 3.5. Detection Limits for Changes in Standard Deviation of Residual
From SF-11 Data Using 4 and 7 Principal Component Models. . . . . . . . .68

Figure 3.6. Autocorrelation Function of SF-11 Data and 4 and 7 PC Model
Residuals from Autoscaled Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

Figure 3.7. Detection Limits for Changes in Mean From SF-11 Data Using 4,
7 and 10 Principal Component Models from Autoscaled Data. . . . . . . . . . .71

Figure 3.8. Detection Limits for Changes in Variance From SF-11 Data Using
4, 7 and 10 Principal Component Models from Autoscaled Data.. . . . . . .71

Figure 3.9. Obtaining R11 and R21 from Original Rm Matrix. . . . . . . . . . . . . . . . . . . . . . . . .76

Figure 3.10. Mapping of Regression Matrix into “Replacement” Matrix.. . . . . . . . . . . . . .76

Figure 3.11. Projection of Sample Onto Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Figure 3.12. Projection of Corrected Sample xc onto Model p.. . . . . . . . . . . . . . . . . . . . . . . . .80

Figure 3.13. Projection of Corrected Sample xc onto Model p Shown with
Projection of Reduced Sample xr onto New Model pc.. . . . . . . . . . . . . . . . . . .81

Figure 4.1. Percent Improvement in Sum of Squared Prediction Error for PLS
Models Over PCA Models.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86



v

Figure 4.2. Autocorrelation Function of Process Outputs and PLS Residuals
from Data Set with White Noise Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Figure 4.3. Autocorrelation Function of Process Outputs and PLS Residuals
from Data Set with PRBS Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Figure 4.4. Autocorrelation Function of Process Outputs and PLS Residuals
Based on PRBS Data from Data Set with PRBS Input. . . . . . . . . . . . . . . . . . .92

Figure 4.5. Detection Limits for Changes in Measurement Noise Mean and
Standard Deviation for PCA (solid lines) and PLS Models (dashed
lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Figure 4.6. Scaled Mean of PCA Residuals and Bias Error Detection Limits
Showing Apparent Bias on Variables 2 and 7.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

Figure 4.7. Ratio of Mean of PCA Residuals to Bias Error Detection Limits
Showing Largest Bias on Variable 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

Figure 4.8. Number of Correct Responses to Bias Test for Autoscaled PCA
Model. 98

Figure 4.9. Number of Correct Responses to Bias Test for Mean Centered
Model. 99

Figure 4.10. Number of Correct Responses to Bias Test for PLS Model.. . . . . . . . . . . . .99

Figure 4.11. Number of No Indications to Bias Test for Autoscaled PCA
Model. 100

Figure 4.12. Number of No Indications to Bias Test for Mean Centered PCA
Model. 101

Figure 4.13. Number of No Indications to Bias Test for PLS Model. . . . . . . . . . . . . . . . . .101

Figure 4.14. Number of Incorrect Responses to Bias Test for Autoscaled PCA
Model. 102

Figure 4.15. Number of Incorrect Responses to Bias Test for Mean Centered
PCA Model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Figure 4.16. Number of Incorrect Responses to Bias Test for PLS Model. . . . . . . . . . . .103

Figure 4.17. Number of Correct Responses to Bias Test for "Best" Models.. . . . . . . . .105

Figure 4.18. Number of Incorrect Responses to Bias Test for "Best" Models. . . . . . . .106

Figure 4.19. Number of No Responses to Bias Test for "Best" Models.. . . . . . . . . . . . . .106

Figure 4.20. Calculated Bias Detection Limits for "Best" Models Based on
Observed Residuals in Calibration Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107



v

i

Figure 4.21. Calculated Noise Detection Limits for "Best" Models Based on
Observed Residuals in Calibration Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Figure 5.1. Arrangement of Data for FIR Model Identification. . . . . . . . . . . . . . . . . . . . . . . .113

Figure 5.2. Arrangement of Autocorrelation Matrix for FIR Model
Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Figure 5.3. Coefficients in First Five Eigenvectors of Autocorrelation Matrix
of White Noise Process Through First Order Filter. . . . . . . . . . . . . . . . . . . . . . .115

Figure 5.4. Points where n = Tangent (a/n) Showing the Frequencies of the
Cosine Eigenvectors.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

Figure 5.5. Points where n = -1/Tangent (a/n) Showing the Frequencies of the
Sine Eigenvectors.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

Figure 5.6. Coefficients of the Cosine Eigenvectors of the Discrete Matrix
Shown with Eigenfunction Solutions to the Continuous Problem... . . . .119

Figure 5.7. Coefficients of the Sine Eigenvectors of the Discrete Matrix
Shown with Eigenfunction Solutions to the Continuous Problem... . . . .120

Figure 5.8. Eigenvalues of the Discrete Case Shown with Scaled Eigenvalues
of the Continuous Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Figure 5.9. Example PRBS Input and Case 2 Process Output. . . . . . . . . . . . . . . . . . . . . . . . .122

Figure 5.10. Bode Gain Magnitude Plot for First Order Process (Case 1) and
PCR Models.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Figure 5.11. Bode Gain Magnitude for Second Order Process (Case 2) and
PCR Models.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Figure 5.12. Eigenvalues of Autocovariance Matrix for Original Signal and
Filtered Signals as Cutoff Frequency is Lowered. .. . . . . . . . . . . . . . . . . . . . . . .127

Figure 5.13. Coefficients of the First, Sixth and Tenth Eigenvectors of the
ACM for Varying Filter Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

Figure 5.14. Bode Gain Magnitude for 1 Latent Variable Models of Second
Order Under-damped Process--No Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Figure 5.15. Bode Gain Magnitude Plots for the Seven Test Processes. . . . . . . . . . . . . . .131

Figure 5.16. Continuum Regression PRESS Surface From Models of First
Order Process (Model 1) with 5% Process Noise. . . . . . . . . . . . . . . . . . . . . . . . .132

Figure 5.17. Continuum Regression PRESS Surface From Models of First
Order Process (Model 1) with 40% Process Noise.. . . . . . . . . . . . . . . . . . . . . . .133

Figure 5.18. Effect of Process Noise Level on Number of Latent Variables in



v

ii

Best Model for Each Continuum Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Figure 5.19. Effect of Process Dynamics on Number of Latent Variables in
Best Model for Each Continuum Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Figure 5.20. Effect of Input Excitation on Number of Latent Variables in Best
Model for Each Continuum Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Figure 5.21. Effect of Mis-Estimated Time Delay on Number of Latent
Variables in Best Model for Each Continuum Parameter. . . . . . . . . . . . . . . . .138

Figure 5.22. Model Errors for Correct and Incorrectly Estimated Time Delays. . . . . . .139

Figure 5.23. FIR Coefficients Identified from First Order System with Noise =
20% of Process Gain.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

Figure 5.24. Bode Gain Plots of Process Model 7 and ARX Models Identified
with PCR. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

Figure 5.25. PRESS Surface for ARX Models Tested Against PRBS... . . . . . . . . . . . . . .144

Figure 5.26. PRESS Surface for ARX Models Tested Against Random Input. . . . . . .144

Figure 5.27. Number of Latent Variables in Best Models for Different Noise
Levels, PRBS Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

Figure 5.28. PRESS Surface for High Noise Low Input Excitation Case. . . . . . . . . . . . .146

Figure 5.29. Bode Gain Plots for True Process and ARX Models Determined
by CR and MLR. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

Figure 5.30. Non-Linear Tank Calibration Data.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Figure 5.31. Segment of Calibration Data Set Showing Model Fits. . . . . . . . . . . . . . . . . . . .152

Figure 5.32. Test Data Set Showing Actual and Predicted Process Output. . . . . . . . . . . .153

Figure A1.1. Loadings on First Two Principal Components in Melter Foaming
Study. 171

Figure A1.2. Scores on First Two Principal Components in Melter Foaming
Study. 172

Figure A1.3. Loadings for First versus Third Principal Component for Revised
Melter Foaming Study. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

Figure A1.4. Scores on First versus Third Principal Component for Revised
Melter Foaming Study. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

Figure A1.5. Loadings for First PC of Mean Centered SF-11 Data.. . . . . . . . . . . . . . . . . . . .179

Figure A1.6. Loadings for Second PC of Mean Centered SF-11 Data.. . . . . . . . . . . . . . . . .180



v

iii

Figure A1.7. Loadings for Third PC of Mean Centered SF-11 Data.. . . . . . . . . . . . . . . . . . .180

Figure A1.8. Loadings for Fourth PC of Mean Centered SF-11 Data. . . . . . . . . . . . . . . . . .181

Figure A1.9. Loadings for First PC of Autoscaled SF-11 Data.. . . . . . . . . . . . . . . . . . . . . . . . .184

Figure A1.10. Loadings for Second PC of Autoscaled SF-11 Data. . . . . . . . . . . . . . . . . . . . . .184

Figure A1.11. Loadings for Third PC of Autoscaled SF-11 Data.. . . . . . . . . . . . . . . . . . . . . . . .185

Figure A1.12. Loadings for Fourth PC of Autoscaled SF-11 Data. . . . . . . . . . . . . . . . . . . . . . .185

Figure A3.1. Responses of t- and T2-Tests to Biases on Specific Sensors.. . . . . . . . . . . .194



i

x

LIST OF TABLES

Table 2.1. Connection Between Variable Numbers and West Valley TAG ID... . . .52

Table 3.1. Φ Matrix for Example System. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Table 3.2. Γ Matrix for Example System... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Table 3.3 C Matrix for Example System. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Table 3.4. Variance Captured by PCA Model of Example Process Output.. . . . . . . . .62

Table 3.5. PCA Loadings Vectors for Example System... . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Table 4.1. Matrix for Calculating Residuals of PLS Models with Number of
Latent Variables in each Model in Square Brackets.. . . . . . . . . . . . . . . . . . . . . . .90

Table 4.2. Error Detection Simulation Results for Bias Errors. . . . . . . . . . . . . . . . . . . . . . .95

Table 4.3. Error Detection Simulation Results for Noise Errors.. . . . . . . . . . . . . . . . . . . . .96

Table 5.1. Numerator [A(q-1)] and Denominator [B(q-1)] Polynomial
Coefficients.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Table 5.2. Numerator and Denominator Polynomial Coefficients for Test
Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Table 5.3. Model Fit Errors and Prediction Errors for Non-Linear Process .. . . . . . .152

Table A1.1. Percent Variance Captured by PCA Model of SF-11 Data using
Mean Centering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

Table A1.2. Percent Variance Captured by PCA Model of SF-11 Data using
Autoscaling.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

Table A3.1. Response of t- and T2-Tests to Sensor or Random Biases. . . . . . . . . . . . . . .194



x

ACKNOWLEDGMENTS

It is doubtful that anyone makes it to the end of their dissertation without a good deal

of help along the way.  This author is certainly no exception.  High on the list of those to

thank is my advisor, Larry Ricker.  I have enjoyed working with Larry a great deal.  He is

always very good at asking the tough question, but I have never known him to ask it with

any intention other than to make me think very carefully about what I was doing.  I'd like

to thank Bruce Kowalski for introducing me to multivariate analysis.  Bruce's enthusiasm

certainly sparked my interest, the results of which you now hold in your hand.  Through

many of these developments Brad Holt has been my chief skeptic.  I thank him for that

because arguing with him has forced me to clarify my own thinking.  Brad also helped me

straighten out some mathematical details, for which I am equally thankful.  Dave Veltkamp

has made many helpful comments along the way.  I have consulted him many times in

order to tap into his fundamental understanding of the methods used here.  Don Marshall of

the Math department deserves special thanks for his help with Toeplitz operator theory.

For a professor to spend as much time with someone who just walked in from "out of the

blue" as Don did with me was definitely beyond the call of duty.  I'd also like to thank Dan

Haesloop for sharing his neural network data, making for some interesting comparisons.  

For their financial support, I would like to thank Battelle Pacific Northwest

Laboratories.  Rick Brouns was particularly helpful in setting up the original contracts

which led to my master's degree and eventually this.  Also, I would like to thank West

Valley Nuclear Services Co., Inc. who supported the bulk of this research.  The National

Science Foundation also contributed to this project and I am particularly grateful for the

Macintosh IIx computer purchased with NSF funds.

On the non-technical side, I would like to thank Norman McCormick for his

mentorship.  Norm was always looking out for my best interests, even, or maybe



x

i

especially, when I wasn't.  I'd like to thank Neal Gallagher for the almost daily, always

irrelevant E-mail messages, which always made me look forward to going into the office.  I

have also appreciated Dave Williams' friendship and our many conversations and outings.

Special thanks goes to the Schirmers and the Buskes for general moral support when I was

a single guy.  I would like to thank my parents for both their financial and moral support,

and for teaching me that effort was at least as important as accomplishment.  My in-laws

have also been very encouraging and helpful.  I am grateful for this, since they must have

wondered at times why their daughter would want to marry someone who was 30+ years

old and still in school.  Finally, and perhaps most emphatically, I would like to thank my

wife Jill for putting up with me even when this project turned me into an ogre.  Jill is

certainly the best thing that happened to me in graduate school.



1.0              Introduction        and        Overview

In today's highly competitive industrial environment, better control of chemical

processes is an important step towards increasing the efficiency of production facilities.

Improved process control can have a positive impact on chemical processes in several

ways:  improved compliance with increasingly stringent environmental regulations, reduced

generation of hazardous wastes and more consistent quality of the final product .  This

work concerns the chemical process monitoring and modeling problem, specifically

process sensor fault detection, process upset detection and process model identification.

These related problems are addressed with a closely related set of methods or tools.  The

methods considered are multivariate techniques based on eigenvector decompositions.  The

overall goal of this work is to test the applicability of these methods for process monitoring

and modeling and to adapt them, when necessary, for use with dynamic systems.  As such,

this work should be considered an exercise in methods development.

1.1  Motivation

Process monitoring, with the goal of detecting failing sensors and process upsets, is

important for reasons of safety and process efficiency.  Process control action based on

faulty sensors is at best inefficient and at worst dangerous.  Process upsets or disturbances

can also lead to operating inefficiencies, such as increased process down time or off-

specification product.  Timely identification of failed sensors and upsets is, therefore, an

integral aspect of the overall process control problem.  

Recent advances in process instrumentation and data collection techniques have

resulted in a rapid increase in the amount of data coming from chemical processes.

Today's processes are typically monitored at more locations and by instruments that

provide more measurements than in the past.  However, process operators (and many

control systems) typically rely on a few key variables and largely ignore the bulk of the



2

2

data.  This is due, in part, to the largely redundant nature of the data produced: many

of the variables measured are very highly correlated.  While much of this data is often

highly correlated, it can also be true that there is more information in the data than might be

at first suspected.  Information of this type is potentially useful, then, for two distinct

reasons.  If the significant information can be extracted from the data it can lead to a deeper

understanding of the the process and can potentially be used for predicting some otherwise

unmeasured output.  The redundancy of the process variables, on the other hand, can be

modeled.  These models can then be used to check new process data for changes in the

process or its sensors.  

Extracting the significant information from the plethora of data produced by heavily

instrumented processes can be difficult.  The addition of process sensors has also increased

the complexity of the fault detection and diagnosis aspects of the monitoring problem.

Fortunately, largely because of the present availability of computers, this data is now

beginning to be utilized much more fully.  Much of the data processing, however, requires

multivariate analysis methods.  Multivariate methods are necessary due to the data

"reduction" or "compression" that they provide.  Variables which contribute essentially the

same information must be combined in a logical fashion in order to reduce the effective

number of variables.  This should serve to keep the process personnel from suffering from

"information overload".  Secondly, the multivariate calibration aspects of the methods used

must be considered.  The methods should be "robust" to the redundancy in the data which

can cause conventional methods to produce results that are highly sensitive to small

perturbations or noise in the process data.  

Historically, chemical process modeling has been done in order to increase the

understanding of the process in the hopes of increasing process operating efficiency

(optimization).  This process modeling has generally been done from a theoretical

standpoint.  Models of processes were built up from the fundamental equations of heat and
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mass transport, chemical reaction kinetics and material and energy balances.

Modeling has become an increasingly important aspect of chemical process control.

This is evidenced by the progression of controller design methods.  The modern era of

control started with the advent of the proportion/integral/derivative (PID) controller.  Even

PID controllers, however, rely on a simple implicit model of the process that includes

information such as process response time.  Controller design advanced to using process

models in the actual setting of the PID tuning parameters.  Recently, advances in process

control algorithms, particularly the model based controller design methods, have further

increased the reliance on process models.  There are several popular techniques, such as

Internal Model Control (IMC), Model Predictive Control (MPC), and Quadratic Dynamic

Matrix Control (QDMC), which rely on an explicit model of the process as part of the the

controller.  These techniques have increased the attention given to dynamic process model

identification.  In fact, when the model-based design schemes are used, the controller

design process is largely complete as soon as the process model (and in some cases the

model error bound) has been specified.  Better process models, therefore, should result in

better process control.

There are several advantages that theoretical models have over statistical/empirical

models.  For instance, it is more appropriate to extrapolate beyond experimentally verified

data when using a theoretical model than when using an empirical model.  A deeper

understanding of the modelled process may also result from theoretical model development.

However, theoretical models are often compromised because they require so many

simplifying assumptions in order to be tractable that they are often biased.  There is also the

possibility that the modelers may build in some of their prejudice about how the process

should work.  Furthermore, developing a theoretical model of a complex process can be

very time consuming.  

Because of the increasing reliance on process models and the difficulties with
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obtaining them directly from theory, the task of identifying dynamic models from

plant data has become an increasingly important one.  Unfortunately, process model

identification is complicated by the fact that actual plant data may suffer from any or all of

the following problems: high noise levels, unmeasured process disturbances, short data

records or correlation in the input parameters.  Any of these difficulties may cause the

identification problem to be poorly conditioned.  In these cases the identified models are

highly sensitive to small changes in the data and can vary widely depending upon which

subset of the available data was used in their calibration.

It appears that these monitoring and modeling problems could be attacked

successfully using several related multivariate statistical techniques.  These are Principal

Components Analysis (PCA), a pattern recognition and data modeling technique, and the

regression methods that may be grouped under the unifying theme of Continuum

Regression (CR).  The biased regression methods Partial Least Squares (PLS) and

Principal Components Regression (PCR), as well as conventional Multiple Linear

Regression (MLR), can all be shown to be special cases of CR.  While PCA, PCR, PLS

and MLR have been used extensively in other fields, such as analytical chemistry

calibration, this work represents a departure because of the dynamic nature of the

monitoring and modeling problem.  There are many things to be learned regarding the

interpretation and applicability of these methods for use with systems where time is a

variable.  Furthermore, there has been very little work done in any discipline using CR.

Thus this work provides some additional insight into the behavior of the CR method.

1.2  Scope, Goals and Approach

This work is limited to the monitoring and modeling of time invariant processes, with

an emphasis on linear processes.  A limited number of examples of non-linear model

identification are considered.  There are many model forms, however, only Finite Impulse

Response (FIR) and Auto-Regressive eXtensive (ARX) models will be considered in the
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process model identification sections.  For monitoring aspects of the the work, the

state-space model format will be introduced.  

In general, the goal of the research was to determine how PCA, PCR and PLS could

be used to enhance process monitoring and control. This general goal was broken down

into three areas of application:   process monitoring, dynamic model identification and

process analysis.  In each of these three areas there are specific questions which were

attacked.  These are outlined below.

Process         monitoring:     Can PCA and PLS be used as effective process monitoring

tools?  Earlier studies have shown that PCA appears to model the "normal" process

variation and have indicated that PCA may be useful for identifying process upsets and

failed sensors.   Other studies have shown that PLS can be a used as a monitoring tool in a

fashion quite similar to PCA.  Can statistical limits be developed around the methods so

that they can be used in a straightforward fashion for fault detection?  How does PCA relate

to the process models normally used and what are the special considerations that must be (if

any) made when dealing with time series data?  These issues are considered in Chapter 3

which focuses on PCA and Chapter 4 which focuses on PLS.

Dynamic         model       identification:     What are the special effects encountered when the

biased regression techniques encompassed by CR are used to identify dynamic process

models?  How do the biases manifest themselves in the resulting models?  How can the

methods be interpreted in conventional control/modeling terms such as frequency response

analysis.  What affect do process noise level, dynamics, input excitation, data record length

and process dead time have on the relative advantage of the CR method over conventional

techniques?  How do these factors affect the location of the optimum model in the CR

parameter space?  Chapter 5 addresses these issues.

Process       analysis:     What can be learned about dynamic multivariate processes using

PCA?  Studies from other fields have indicated that PCA can be useful as a pattern
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recognition technique.  Often, otherwise unrecognized relationships between

variables and samples are made apparent when the data is subjected to PCA.  Does

this hold for dynamic process data?  Results in this area are somewhat limited and rather

subjective.  This work is covered in the Appendix.

The approach to these questions was to derive as many of the answers from theory as

possible.  When this was not possible, certain techniques were demonstrated/tested with

extensive simulations.  Finally, examples of the use of techniques are given using actual

process data.  

1.3  Review:  The State of Process Fault and Upset Detection

Much has been written about process fault detection, however, the basic approach can

be summarized in a few short sentences.  Generally, a model of a process is developed,

either through theoretical or empirical means.  The model is used to predict process outputs

which are then compared to actual outputs.  The differences between actual and predicted

outputs, the residuals, are then subjected to some sort of statistical test to determine if they

are significant.  This general approach is outlined in the references by Himmblau (1978),

Willsky (1976) and Iserman (1984).  The major difference in the methods lies in the types

of models used for output prediction and the type of statistical test applied to the residuals.

For instance, a large body of work is available concerning statistical significance tests for

use with the autocorrelated residuals that are often produced, such as the work by Harris

(1989) and Alt et. al. (1977).  The body of literature concerning identification of process

models is also relevant to fault detection but this will be dealt with more fully in the next

section.

Using PCA to develop a model which directly related process outputs to each other

for process monitoring is a new approach.  Some work has been done where PCA was

used on process residuals as shown in Subba and Rao (1974 and 1976).  It is possible that

the approach taken here has not been used before because of the limited number of systems
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to which it has been applicable in the past.  As will be shown, the PCA/PLS

monitoring techniques are best suited to systems that are heavily instrumented.    

1.4  Review:  The State of Process Model Identification

Not surprisingly, the method used for identifying a process model is generally

dependent upon the model form chosen.  Thus, the many models forms used have given

rise to a large number of identification techniques.  The main interest here is the

identification of FIR and ARX models, therefore, this discussion will be limited to methods

typically applied for identification of these models.

There is a surprising dearth of information concerning the identification of FIR

models, especially considering their use in several controller design schemes.  For

instance, in the definitive work by Ljung (1987), FIR models are scarcely mentioned, and

no discussion of methods suited to their identification is made.  It appears that, in general

practice, most FIR models are generated by doing single pulse or step tests on the process

inputs and getting the FIR coefficients directly.  A notable exception to this is the work by

Ricker (1988) where PLS and a method based on the Singular Value Decomposition (SVD)

were used to obtain FIR models.  In Ricker's work a Pseudo-Random Binary Sequence

(PRBS) was used as an input to the process.  While it is possible to use MLR to obtain FIR

coefficients, the author has found that this approach generally does not produce satisfactory

results:  the correlation in the FIR coefficients makes the MLR solution somewhat unstable.

The models obtained often have spurious variations in the coefficients. To a large extent,

this work can be considered an extension of that done by Ricker.

Identification of ARX models is typically done either by MLR or with the method of

Instrumental Variables (IV) (Ljung 1987, Soderstrom and Stoica 1983).  MLR is more

satisfactory for use with ARX models than with FIR models.  This is because the smaller

number of parameters, and reduced correlation in the parameters of ARX models makes the

problem solution more stable.
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Many more complex model forms, particularly those that include explicit noise

models, are typically identified with prediction error methods (PEM) (Ljung 1987).

In these algorithms various search techniques are employed to identify the model

parameters that provide the best prediction of the process outputs.  These search techniques

are employed because these more complex models are inherently non-linear in the

parameters.  The conventional PEM is not necessary for identification of FIR and ARX

models, and in some cases, (depending upon how it is employed), can be shown to reduce

to the MLR solution.



2.0               Background

The ground work for this research comes from many areas.  As much of this

information as is practical is included here so that the reader will not be required to go to

many other sources in order to understand the developments in this work.  This chapter

includes sections on the data modeling technique PCA, the multivariate calibration methods

covered by CR (MLR, PLS and PCR) and statistical process control.  In addition, some

common process model forms and identification techniques will be reviewed.  It is beyond

the scope of this document to give a complete treatment of all of these fields but enough

background information is included so that the reader may follow the developments here.

In addition, descriptions of the processes that we have used to test the techniques

developed here are included.  

Most of the mathematics covered in this chapter are well known.  However, in some

cases minor extensions to known methods, developed by the author, are included for the

sake of continuity.  Such extensions are noted in the text.  Major developments/extensions

are covered in subsequent chapters.

2.1  Principal Components Analysis (PCA)

The mathematical ideas behind the PCA method have been known since the times of

Gauss, although efficient means of calculating the eigenvectors and eigenvalues of matrices

were not discovered until much later (Strang 1980).  The technique was not used for data

analysis until this century when it became a popular pattern recognition/factor analysis

technique in the field of psychometrics (the application of statistical methods to

psychology).  The development of PCA and many other statistical techniques was driven,

in part, by the need to analyze data sets with many correlated variables and large amounts

of noise or uncertainty.  Psychometricians face problems of this type quite often and this

work owes much to them.  The PCA technique has also been used in the field of
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econometrics, and more recently in chemometrics.  PCA and many other multivariate

techniques were slower to catch on in the hard sciences largely because the data is

better in these fields, i.e., there are smaller uncertainties and fewer confounding influences

in the data.  As problems with more variables and higher noise levels have become

common in the chemical fields the need for chemometrics has increased.

2.1.1  The PCA Method

In PCA an m by n data matrix X is decomposed into the sum of the product of n pairs

of vectors (Jackson (1976,1980A), Sharaf et. al. (1986), Geladi and Kowalski (1986)).

Each pair consists of a vector in n called the loadings, pi, and a vector in m referred to as

the scores, ti.  Thus X can be written as

X = t1p1T  + t2p2T + ... + tnpnT (2.1)

The matrix of loadings vectors P forms a new orthogonal basis for the space spanned by X

and the individual pi are the eigenvectors of the scatter matrix of X, defined as:

scatter X  = 1
m - 1

 XTX
(2.2)

 Thus

scatter (X)pi = λipi (2.3)

where  λi is the eigenvalue associated with the eigenvector pi.  If the variables (columns) of

X  have been mean-centered, (mean subtracted off each variable to produce variables of

mean zero), the scatter matrix defined by equation (2.2) becomes the covariance matrix of

X .  If the variables have been autoscaled (mean-centered and divided by the standard

deviation to produce variables of zero mean and unit variance) the scatter matrix becomes

the correlation matrix.  The loadings vectors pi are often referred to as principal
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components, or as "latent variables" (particularly in PLS) because they are linear

combinations of the original variables that together explain large fractions of the

information in the original matrix.  Each of the the ti is simply the projection of X  onto the

new basis vector pi:

ti = Xpi (2.4)

The value of each λi is an indicator of the covariance in the data set in the direction pi.

In fact

fraction variance in direction pi = λi/Σλi (2.5)

In a data set that has been scaled to have variables of zero mean and unit standard

deviations (autoscaled)

Σλi = n (2.6)

where n is the number of variables in the data set.  In this case, each of the scores vectors ti

will then have a mean of zero and a standard deviation equal to λ i.  The scores can be

adjusted to unit variance (which is convenient for other statistical tests, as will be shown)

by dividing through by the associated eigenvalues

ti,adj = ti/λi (2.7)

PCA is very closely related to the Singular Value Decomposition (SVD) (Strang

1980) where a data matrix X is decomposed as

X = USVT (2.8)

where V contains the eigenvectors (pi) and S  is a diagonal matrix containing the square
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roots of the eigenvalues (the singular values) of the covariance matrix of X.

Once the eigenvectors have been determined using PCA or SVD, projections of

the data onto the eigenvectors can be made.  These projections are commonly referred to as

"scores plots" and are often useful for showing the relationships between the samples

(rows) in the data set.  Plots can be done as the projections of the samples onto a single

eigenvector versus sample number (or time) or onto the plane formed by two eigenvectors.

A projection of the samples onto the two eigenvectors associated with the largest

eigenvalues depicts the largest amount of information about the relationship between the

samples that can be shown in two (linear) dimensions.  It is for this reason that PCA is

often used as a pattern recognition and sample classification technique.    

Plots of the coefficients of the eigenvectors themselves, known as "loadings plots",

show the relationships between the original variables in the data set.  Correlations between

variables show up in the loadings plots.

2.1.2  The Q and T2 Statistics

When PCA is done on a data set it is often found (and it is generally the objective) that only

the first few eigenvectors are associated with systematic variation in the data and that the

remaining eigenvectors are associated with noise.  Noise in this case refers to uncontrolled

experimental and instrumental variations arising from random processes.  PCA models are

formed by retaining only the eigenvectors which are descriptive of systematic variation in

the data.  Determination of the proper number of eigenvectors can be done by cross-

validation or other techniques, as pointed out in the works of Malinowski (1977a, 1977b,

1987).  Once the PCA model is formed new data can be viewed as projections onto single

eigenvectors (scores plots) or the plane formed by pairs of eigenvectors.  The scores can be

used to obtain the "PCA estimate" of a given sample, i.e. the projection of the sample into

the PCA model.  For a reduced order model Pk (where only the first k of the n total

eigenvectors were retained) and a new sample xi this is obtained from:
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 x
^

 i  = TiPkT = xiPkPkT (2.9)

where Ti is the vector of scores on the model Pk for sample xi.

The "goodness" of fit between new data and the model can be monitored by

calculating the data residual.   The residual ri for sample xi is given by

ri  = xi - x
^

 i = xi(I - PkPkT) (2.10)

The magnitude of the residual for any sample xi is

Q = ||ri|| = riTri = xiT(I - PkPkT)xi (2.11)

and expresses the "goodness of fit" of the new sample to the model Pk as a scalar.  It can

be calculated by taking the sum of squares of the components of ri.  Jackson (1976, 1979,

1980, 1981) used the results of Jensen and Solomon (1972) to show that approximate

confidence limits can be calculated for the model residual Q provided that all the

eigenvalues of the covariance matrix are known, as shown below:

Qα = Θ1 
cα 2Θ2h0

2

Θ1

 + 1 + 
Θ2h0 h0 - 1

Θ1
2

1
h0

(2.12)

where

Θi = λj
i∑

j = k+1

n

 for i = 1,2,3
(2.13)

and

h0 = 1 - 2Θ1Θ3

3Θ2
2

(2.14)
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In (2.12) above cα is the normal deviate corresponding to the upper (1 - α)

percentile.  Equation (2.13) simply states that the Θi are equal to the sum of the eigenvalues

for the eigenvectors not used in the model taken to the ith power.  Note, however, that this    

result was derived assuming random errors of mean zero etc.  It is not clear how

autocorrelated data from a real process would affect this result.  However, Jensen and

Solomon (1972) point out that the Q statistic changes little even when the underlying

distribution of the original data differ substantially from normal.

The variables responsible for large Q values can often be found through normal

statistical process control methods which track single variables.  However, there are

instances when these methods fail to detect systematic changes in the process or its sensors

because the values of the individual variables have not gone "out of bounds" but have

instead just become uncorrelated (or changed their correlation) with the remaining

variables.  

There are several methods for determining the source of the large Q values in this

case.  The simplest method is to calculate the column norm (the sum of squares over the

variables, instead of over the samples, as is done to calculate Q values) for the residuals

matrix for the samples with large Q values.  Generally, the perturbed variables will show

up as having the largest residuals.    In other cases the factors responsible for large values

of Q can be found by subjecting the matrix of ri vectors to PCA.  This determines the major

source of variation in the data not accounted for by the original PCA model.  Typically the

variable with the largest (absolute value) coefficient in the first eigenvector from the

residuals matrix will be the variable responsible for the deviation of the PCA model.

Statistical tests for identifying sources of large Q values are developed in the following

sections.

While the Q statistics offer a way to test if the process data has shifted outside the
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normal operating space, there is a need for a statistic that provides an indication of

unusual variability within the normal subspace.  This is provided by Hotellings T2

statistic (Hotelling 1947, Jackson 1980).  The value of T2 for one sample is equal to the

sum of squares of the adjusted (unit variance) scores on each of the PCs in the model.  That

is:

T2 = ti

λ i

2∑
i = 1

k

(2.15)

Here k is the number of principal components retained in the model.  In words, T2 is the

squared length of the projection of the current sample into the space spanned by the PCA

model of the data.  As such, it is an indication of how far the PCA estimate of the sample

(as given by equation 2.9) is from the multivariate mean of the data.  The statistical

confidence limits for the values of T2 can be calculated by taking advantage of the statistical

F-distribution as follows

 

Tk,m,α
2  = 

k m-1
m-k

Fk,m-k,α (2.16)

Here m is the number of samples in the data set used in the calculation of the PCA model, k

is the number of principal component vectors retained and α corresponds to the standard

normal deviate.  

2.1.3  Statistics Associated with PCA Residuals

The sample variance of the residual for each variable can be calculated for the PCA

models.  It can be shown that for a given data set, X, with a full set of PCA vectors, P , of

which k are retained, and eigenvalues λ, then the variance of the residual for the jth variable    

is
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sj
2 = pij

2 λ i∑
i = k+1

n

(2.17)

where pij is the loading of the jth variable in the ith     PC.  Equation (2.17) is a direct result of    

the fact that the variance in the direction of a particular eigenvector is equal to the associated

eigenvalue as indicated by equations (2.5) and (2.6).  For the data matrix from which the

model was obtained equation (2.17) will be exact.  If, however, it is assumed that the

eigenvalues of all the PCs not retained in the model are equal (which is a common
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assumption when they are not used1) then the variance in the residual of the jth    

variable can be estimated using only the PCs and eigenvalues retained in the model

from

sj
2 = λ i∑

i = 1

n

 - λ i∑
i = 1

k

1 - pij
2∑

i = 1

k

(2.18)

The first term on the right hand side of equation (2.18) can be replaced with the total sum

of squares, which is equal to the sum over all of the eigenvalues.  If this is done there is no

need to calculate any of the principal components which are not retained in the model.

In chemical processes where there are many types of sensors in use (e.g.

temperature, pressure, pH etc.), the amount of noise for each sensor may vary widely.  In

this case it is probably best to use equation (2.17) to estimate the variance of the residuals

for each variable.  For applications where the sensors are all closely related equation (2.18)

may be more appropriate.  An example of this situation is spectroscopy, where the

variables are absorbances at specific wavelengths which may be measured by a single

sensor or by a series of identical sensors.

The statistical properties of the residuals calculated above can be used with hypothesis

testing to check for failed sensors and changes to the process.  This is the general method

outlined in Mehra and Peschon (1971), and is the basis for many of the methods surveyed

in Willsky (1976), Isermann (1984) and Basseville and Benveniste (1986).  However,

these methods require a complete dynamic model of the process.  Also, it should be noted

that all of the methods mentioned here assume that the residuals are "white", i.e. are

uncorrelated in time.  The conditions under which the PCA residuals may be considered

"white" is addressed in the next chapter.

                                                
1See for example Malinowski (1977a, 1977b and 1987).  In these works the number of principal

components is determined by testing the hypothesis that the eigenvalues of the unretained principal
components are equal.
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It is possible to compare the observed and expected (as calculated by (2.17) or

(2.18)) variance of the residuals of individual variables in order to identify changes to

the system and its sensors.  The residuals on the individual variables are not independent of

each other; they have only as many degrees of freedom as the number of unused PCs in the

data model.  However, if the PCA model has captured the deterministic variation in the data

set and the remaining variation is due to white noise then the individual residuals will be

normally distributed.  (This will be discussed in more detail in the next chapter.)  In this

case, the standard F-test with the appropriate degrees of freedom may be used.  The test

will check to see if

sjnew
2

sjold
2

 > Fvnew, vold, α
(2.19)

where

vnew = mnew - 1 (2.20)2

vold = mold - k - 1 (2.21)

Here mnew and mold are the number of samples in the test data set and training data set,

respectively, and k is the number of PCs retained in the model.  When the inequality in

equation (2.19) holds then a change in the variance of the residual has occurred to a

confidence level of 1 - α .  The F-test parameters can now be used to set upper and lower

limits on the variance of the residuals.

The mean residual should be zero for all the variables.  The t-test can be used to detect

a shift in the mean away from zero.  In this case the hypothesis that the means are equal is

to be tested.  Thus the t-test reduces to

                                                
2In Wise (1989) and Wise (1990) this was erroneously reported as vnew = mnew - k - 1.
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tv tot = 
xold - xnew vold + vnew

0.5

1/vold + 1/vnew
0.5 voldsold

2  + vnewsnew
2 0.5

(2.22)

where the degrees of freedom are both one greater than for the case given above.  For the

purpose of setting limits, the variances can be assumed to be equal to the variance of the

residuals of the calibration set as calculated by (2.17) or (2.18), as appropriate.  Once the

desired confidence level is chosen, it is possible to solve for the difference between the old

and new means that is just significant.  

Note that the variance test in (2.19) requires at least 2 samples, while the mean test in

(2.22) could be done (in principle) with 1 sample.  In practice, while it would be possible

to base the tests on 2 or 1 samples, respectively, a “window” of samples would be used in

order to increase the sensitivity of the methods.  Better sensitivity to changes in the system

is obtained by looking at a series of residuals from recent samples.  The number of past

samples in the series (the width of the window) would be based on the response time and

sensitivity desired for the detection scheme.  Wide windows which consider many samples

would allow detection of smaller changes, but would not respond as quickly to large

changes as narrow windows.

It is also possible to apply a T2 test to all of the residuals collectively in order to detect

a shift of the multivariate mean residual of the process.  This test is outlined in Anderson

(1984) and was employed by Ricker (1990).  In this application for a window of N

samples the T2 statistic is:

T2 = N η
_

 TS-1η
_

 (2.23)

In equation (2.23) η
_

  is the mean of the N scaled independent residuals ηi which can be

calculated from each sample xi:
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ηi = xiPrΛr-1 (2.24)

where Pr is the matrix of principal components not retained in the model and Λr is the

diagonal matrix of their associated eigenvalues.  Thus at time t:

η(t) = 1
N

η(t - i + 1)∑
i = 1

N

 
(2.25)

The covariance of the mean centered independent residuals S  at time t can be calculated

from

S(t) = 1
N-1

η(t-i+1) - η T η(t-i+1) - η∑
i = 1

N

 
(2.26)

The statistical limit on T2 is then calculated as

Tr,N,α
2  = 

r N - 1
N - r

Fr,N-r,α (2.27)

where r is the number of principal components not retained in the model.

Ricker (1990) has shown that for a given bias direction, bu, it is possible to estimate

the minimum detectable bias magnitude, νmin:

νmin = ± 
Tr ,N,α

2

NbuGrGr
Tbu

T (2.28)

where

Gr = PrΛr-1 (2.29)

Ricker notes that the estimate of minimum detectable bias given in (2.28) will be degraded
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when S ≠ I and when the PCA model is not accurate.  In spite of this, it does offer a

useful indication of the sensitivity of the method for particular bias directions.

In order to use the T2 test for a change in the mean residual, the sample window N

must be greater than the number of unused principal components r.  This is evident from

equation (2.27), where it is apparent that in order for the degrees of freedom in the F test to

be a positive values N must be greater than r.

In order to determine the “detection power” of the PCA model, the control limits must

be converted back to the original units of the data.  This is done by first determining the

vector of ratios, h, of the change in a variable to the change in its residual (with all other

variables remaining constant).  It can be shown that this is equal to the inverse of the

diagonal elements of (I - PkPkT), thus

h = (diag(I - PkPkT))-1 (2.30)

The PCA detection limits for changes in the residual mean (calculated from either

equation 2.22 or 2.28) can then be scaled by the h vector to obtain the detection limits in

terms of the original variables.  In order to obtain the detection limits for changes in the

residual variance (from equation 2.19), the PCA limits must first be converted to standard

deviations, then scaled and converted back to variance limits.  The result of these scaling

operations is that detection limits will be established in terms of the measurement units of

the original variables.  These limits are an estimate the smallest amount of sensor bias

(arising from sensor drift or a change in the process) and added noise (arising from added

measurement noise) which may be detected by PCA at the given confidence level.

2.2  Principal Components Regression (PCR)

The first regression method that will be considered in this study is Principal

Components Regression (PCR).  It a natural progression to go from PCA, which uses

principal components to model a single block of data, to PCR, which uses the
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principal components of one block of data to build up a correlation between that data

and another data vector.

2.2.1  Motivation for PCR

The basic idea behind PCR, and the related biased regression method PLS, is that not

all of the variation in the independent data block is predictive of the dependent variables.  In

PCR the underlying assumption is that changes in the independent variables that lie along

the directions of greatest variation tend to be causally related to variation in the dependent

variables.  Independent variable variations in other directions, while possibly correlated

with the dependent variable, are not as predictive due to the corrupting influence of noise.

Another way of looking at PCR is from the point of view of the stability of the regression

problem.  PCR can be thought of as a way to get around the sensitivity that the regression

problem may have to small changes in the data.  In MLR, if the independent data block is

nearly rank deficient (the covariance matrix has some eigenvalues near zero), then the

solution to the normal regression equation can change drastically for just a small change in

the data.  Thus a small amount of corruption from noise can make a big difference in the

regression vector obtained.  (See, for instance, the example in Strang 1980.)

2.2.2  The PCR Method

The PCR method is outlined in several articles and texts such as Geladi and Kowalski

(1986), Lorber et. al. (1987) and Naes and Martens (1988).  However, the method will be

reviewed briefly here.  Let the block of independent variables be called X , where the

columns represent the different variables and the rows are the samples.  Let the vector of

measurements of the dependent variable be called y .  Assume that the PCA decomposition

of the X block has already been performed.  The y vector can now be regressed against the

first k X  block scores using the normal regression equation.  The result is the vector of

regression coefficients b which relate the X  block scores to the y vector.  Here Tk is the
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matrix of the first k scores vectors ti which are retained in the model of the X block.

b = (TkTTk)-1TkTy (2.31)

The regression vector is obtained by multiplying the regression coefficients b by the X

block loadings vectors Pk

r = Pkb (2.32)

The estimates of the dependent variables are now obtained by multiplying the X  block by

the regression vector

 y
^

  = X r (2.33)

As mentioned above, the PCR problem is well conditioned.  It replaces the calculation

of the inverse of the covariance matrix, (XTX)-1, with calculation of the inverse of the

scores covariance, (TkTTk)-1.  The advantage exists because, if the data is nearly rank

deficient, (XTX) is nearly singular and has an unstable inverse.  Because of the

orthogonality of the scores vectors in PCA (TkTTk) is perfectly conditioned.  It is zero

everywhere except on the diagonal; thus its inverse is simple to compute.

The critical decision in PCR involves the number of components k to retain when

building the regression model.  This is generally answered through application of a cross-

validation procedure.  Typically, the data set is split into s subsets, with s depending upon

the number of data samples available.  All of the data, less one of the subsets, is then used

to calculate up to n regression models rij (where n is the number of variables in the data

set).  This procedure is repeated s times, leaving out a different subset of the data each

time.  Thus, each regression model rij is calculated using a different number of principal

components i and without a particular subset of the data j:
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rij = P ij Tij
TTij

-1
Tij

Ty j (2.34)

where Pij
-  is the matrix containing the first i principal components of the X  block without

the jth subset, Tij
-  is the corresponding scores matrix and yj

-  is the y block without the jth        

subset.  Each of these models is then tested for its ability to predict the data that was not

used in the calculation of the regression vector.  A Predictive Residual Error Sum of

Squares (PRESS) can be calculated for each regression model.  This procedure is repeated

once for each subset of the data and the final PRESS is the sum over the subsets j for each

number of principal components i:  

PRESS i = y j - X jrij
T y j - X jrij∑

j = 1

s

(2.35)

where yj and Xj are the jth subsets of the y and X data blocks, respectively.    

It is generally found that initially the PRESS declines as principal components are

added to the regression (starting from one principal component). However, the PRESS

usually goes through a minimum and starts to increase as more components are added.  (If

all of the principal components are retained the MLR solution is obtained.)  The final

regression model is then calculated using the entire data set and the number of principal

components (or latent variables) determined from the cross-validation.  A typical PRESS

plot is shown in Figure 2.1.  In the example plot the regression model calculated with 5

principal components has the minimum prediction error.  
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Figure 2.1.  Example of Typical PRESS Plot.

2.3  Partial Least Squares (PLS) Regression

PLS regression methods are well described by Hoskuldsson (1988) and the history

of PLS is covered quite well by Geladi (1988).  A theoretical foundation for PLS is

provided in the reference by Lorber et. al. (1987). In the paragraphs that follow a brief

description of the method is presented and the computational steps are outlined.



2

6

2

6

2.3.1  Motivation for PLS

PLS is a multivariate calibration technique where a data matrix of inputs, known as

the X or independent block, can be calibrated to a matrix of one or more outputs, the Y or

dependent block (Lorber et. al 1987, Geladi 1988).  PLS can be thought of as a

simultaneous decomposition of the X  and Y blocks using PCA.  In PLS, however, the

eigenvectors are rotated in each of the blocks so that the samples have similar highly

correlated scores.  To put it another way, the projections of the independent variables onto

the first "rotated eigenvector" of the X block will be highly correlated to the projections of

the dependent variables onto the first "rotated eigenvector" of the Y block and so on.  

2.3.2  The PLS Method

Mathematically, the PLS algorithm exchanges the scores between the X and Y blocks

as the matrix decomposition proceeds, resulting in highly correlated "eigenvectors" (latent

variables).  The algorithm is shown in equations (2.36) through (2.50) below.

ustart = some yj (2.36)

wT = uTX/uTu (2.37)

wTnew = wTold / ||wTold|| (2.38)

t = Xw/wTw (2.39)

qT = tTY/tTt (2.40)

qTnew = qTold / ||qTold|| (2.41)

u = Yq/qTq (2.42)

At this point the convergence of t can be checked.  If it hasn't changed go to equation
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(2.44), else go to equation (2.37).  If the Y block has only one variable, then

q = q = 1 (2.43)

and the steps in equations (2.39) through (2.42) can be omitted and no more iteration is

necessary, (the PLS method is non-iterative if there is only one Y block variable).

Continue the procedure by performing the renormalizations:

pT = tTX/tTt (2.44)

pTnew = pTold / ||pTold|| (2.45)

tnew = told ||pTold|| (2.46)

wTnew = wTold ||pTold|| (2.47)  

After each latent variable is calculated then the corresponding value of bi, (which relates the

scores on the ith X block latent variable ti to the scores on the ith Y block latent variable ui)    

must be determined from

bi = uiTti/tiTti (2.48)

Once the bi is determined then the residuals may be calculated in preparation for

calculation of another latent variable as follows:

Ei = Ei-1 - tipTi where X = E0 (2.49)

Fi = Fi-1 - bitiqTi where Y = F0 (2.50)

At this point another latent variable can be calculated by returning to equation (2.36), and

replacing X and Y by their residuals Ei and Fi, respectively.
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When PLS is used for prediction the independent block is decomposed while

the dependent block is built up.  The X  block scores ti are estimated by multiplying

X by the weights (wi) as follows:

ti = Ei-1wi (2.51)

Ei = Ei-1 - tipiT (2.52)

where E0 = X (as above) and the estimated Y block is built up as

Y = bitiqi
T∑

i = 1

k

(2.53)

where k is the number of latent variables to be used in the prediction model.

PLS can be contrasted with Multiple Linear Regression (MLR) by noting that MLR is

a special case of PLS, i.e., MLR is equivalent to using all the latent variables in PLS.  In

MLR the vector of coefficients bi,mlr is estimated for each of the yi in Y as

bi,mlr = (XTX)-1XTyi (2.54)

thus the estimated value of Y is

 Y
^

   = XB (2.55)

where B is composed of the column vectors calculated in (2.54).  While MLR generally

gives a better fit to the calibration data, (because it uses all the variation in the X  block and

has a larger number of degrees of freedom), PLS often gives better prediction because it

uses only the predictive information.

The parameters used in PLS prediction can also be reduced to a single linear equation,

similar to that of (2.55):
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 Y
^

   = XC (2.56)

where C is a matrix in the general case and a vector in the case of only one variable in the Y

block.  This is done by substituting equation (2.52) into (2.51) and substituting the result

into (2.53).  The result is equation (2.57) where k is again the number of latent variables to

be used in the prediction (as above) and it is assumed that the value of the term in brackets

is equal to I for the case of i = 1.

Y = X bi I - w jpj
T∏

j = 1

i - 1

w iq i
T∑

i = 1

k

(2.57)

It is proposed that PLS can also be used to determine the general state of the process

in a fashion similar to the use of the Q statistics associated with PCA models.  This requires

that PLS models be obtained that relate each variable to the remaining variables in the

system.  Thus for a system with n variables, n PLS models would be required.

Fortunately, using the relationship given in equation (2.57) the n PLS models can be

formed into a single matrix, with each model being a column vector.  Because each of the

variables does not contribute to its own prediction, the resulting prediction matrix, Mp, has

zeros on the diagonal.  Thus the PLS prediction X
^

  of a data matrix X  can be obtained by

simple matrix multiplication

X
^

   = X Mp (2.58)

A residuals matrix, Rpls, can be calculated from

Rpls = X - X
^

   = X - X Mp = X(I - Mp) (2.59)   

The similarity between equation (2.59) and the calculation of the PCA residuals in equation
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(2.10) should be readily apparent.

The residuals matrix Rpls can be used in much the same manner as the PCA

residuals matrix R for determination of the overall state of the process (as in calculation of

Q) or for determining the failure of specific sensors.  In the latter case PLS predictions for

each variable can then be compared with the actual values, and the off-normal variables can

be identified.  As noted previously, this approach is the generally accepted method for

process fault detection.  A model is produced which predicts the value of a process variable

from other process variables (or process inputs) and the difference is monitored.  

In contrast to least-squares methods, even if the calibration data consists of

deterministic variation and white noise, the PLS model residuals are not expected to be

mean-zero and white (see for instance Lorber (1987) or Hoskuldsson (1988)).  PLS

provides biased estimates.  Therefore, the methods used to monitor the residuals for

changes must be adjusted accordingly.

It should be noted that the idea of using PLS in this fashion is related to the general

idea of prediction of process outputs using secondary measurements, such as the example

provided by Mejdell and Skogestad (1989).

2.3.3  PLS and PCR with Non-Linear Inner Relationships

As presented in the previous sections, PLS and PCR are linear techniques.  PLS and

PCR can be used with nonlinear data, however, in one of two ways.  First, it may be

possible to transform the data to a linear (or approximately linear) form.  Such transforms

are generally arrived at through theoretical considerations3.  On the other hand, both the

PLS and PCR methods can be transformed into non-linear methods by changing the "inner

relationship" between the X  and Y blocks.  This PLS this is done by substituting a non-

                                                
3A simple example of this would be modelling the relationship between the height of liquid in a

tank and the outlet flow rate.  Flow through a constriction is proportional to the square root of the pressure
drop, which is proportional to liquid height.  Therefore, a relationship would be proposed between the outlet
flow and the square root of the surface height.
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linear relationship, such as a polynomial fit, for equation (2.37), while in PCR this is

done by proposing a non-linear relationship instead of equation (2.22)  The exact

form of the relationship can come either from theory or can be suggested by a plot of the X

versus Y block scores (in PLS the ti and ui, respectively).

2.4  Continuum Regression

The regression techniques of MLR, PCR and PLS can all be unified under one

approach which will be referred to here as continuum regression.  The basic idea behind

continuum regression has been discussed among chemometricians for some time, as was

pointed out in the article by Lorber et. al. (1987).  The descriptive name "continuum"

comes from a paper by Stone et. al. (1990).  The algorithm used here is slightly different

than either of the approaches of Lorber and Stone but the result is the same.

2.4.1  Motivation

It was the original intention of this work was to investigate 3 regression techniques

for the identification of process models: Multiple Linear Regression (MLR), Partial Least

Squares (PLS) and Principal Components Regression (PCR).  The problem with this

approach is that it presents a rather fragmented view of the identification picture: 3 isolated

techniques.  Continuum regression provides a way to unify the 3 methods: PCR, PLS and

MLR can all be shown to be special cases of continuum regression.  Furthermore,

considering the methods collectively should provide additional insight into the how the

methods relate to each other.  An additional incentive was provided by the results of Lorber

et. al. (1987), which showed that for some calibration problems techniques that lay in the

continuum between PLS and MLR gave optimal regression models.  

A central idea behind continuum regression  is that the PLS method captures

covariance between the input and output blocks.  This can be thought of as an attempt to

balance the two tasks of providing a reduced order description of the input data block and



3

2

3

2

correlating the input data to the output data.  On the extremes of this trade off are

PCR, which starts with a model that describes variance in the input block and

correlates it piece by piece to the output block, and MLR, which seeks only to correlate the

input and output blocks without regard to the input block structure.  The conventional PLS

method tries to do both and thus occupies some middle ground between PCR and MLR.

The relationship between CR and the individual techniques of MLR, PLS and PCR are

shown graphically in Figure 2.2.  Stone refers to MLR, PLS and PCR methods as

"canonical correlation", "canonical covariance" and "canonical variance" methods,

respectively.  This balance between describing variance and capturing correlation can be

changed continuously, however, by several algorithms.  

Continuum Reg

PCR
"canonical variance"

PLS
"canonical covaria

Figure 2.2.  Relationship Between Continuum Regression and PCR, PLS and MLR.

In this work a continuum regression method is chosen that is simple to program but

computationally inefficient.  The mathematical details of this algorithm are given in the next

section.  In this routine a singular value decomposition (SVD) of the input data block is

calculated and the singular values are taken to the desired power, with zero corresponding

to MLR, infinity to PCR and 1.0 to conventional PLS.  The input block is re-formed using

the modified singular values and then a conventional PLS routine is used to obtain a

regression model.  The PLS regression vectors are formed then rescaled using the original

SVD matrices and the modified singular values.  This is something of a brute force

approach but the algorithm converges to the PCR and MLR solutions for large and small

powers of the singular values, respectively, as it should.

Now, instead of looking at the 3 regression techniques separately, it is possible to

look at a continuum of techniques and see how the prediction properties change as the



3

3

3

3

number of latent variables and continuum parameter (power to which the singular

values are taken) are varied.  Thus, a 3-dimensional predictive residual error sum of

squares (PRESS) surface can be constructed for any given identification problem.  A

search can be made over the error surface to find the optimum model for prediction.

2.4.2  Continuum Regression Method

In the version of the CR method used in this work, the first step is to perform a

singular value decomposition on the independent variable block

X  = U S VT (2.60)

The matrix Sm is formed by taking each of the diagonal entries of S (the singular values) to

the desired power, m.  The new X block, defined as Xm, is then formed as follows:

Xm = U Sm VT (2.61)

The PLS algorithm described earlier can now be used along with equation (2.57) for

the regression vector calculation to produce a regression vector for any number of latent

variables desired.  The regression vector obtained is not properly scaled because of the

rescaled X  block.  Any regression vector, r, can be rescaled, however, by projecting it

onto the SVD basis set V and multiplying by the ratios of the singular values used in (2.61)

to the original singular values calculated in (2.60).  Thus:

rscl = r V Sscl VT (2.62)

where

Sscl = Sm./S; (2.63)

where the symbol "./" indicates term by term division of the elements of the singular value
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matrices.

A convenient feature of this particular continuum regression algorithm is that it

is just a new "shell" written around the PLS routine, and is therefore quite easy to program.

It is probable, however, that other algorithms are more efficient computationally.  Another

nice feature of this CR algorithm is that it easy to understand how it works.  Knowing that

PLS captures covariance, (i.e., tries to strike a balance between capturing X  block variance

and obtaining a correlation with the Y block), it is easy to see what the effect of CR would

be.  When the singular values are taken to large positive powers, the X  block becomes

progressively more directional.  The PLS model gets progressively more biased towards

the major eigenvectors (eigenvectors associated with large eigenvalues) because any

rotation towards minor eigenvectors results in a rapid decrease in the PLS objective

function.  Thus the PLS latent variables begin to look more like the PCR loadings vectors.

On the other hand, when the singular values are taken to very small powers, the X  block

becomes progressively less directional.  Any rotation of the PLS latent vectors captures

approximately the same amount of variance so the algorithm tends to find the best

correlation.  The result is that the solution begins to look very much like the MLR solution.  

In PCR and PLS a search is performed which uses cross validation to determine the

number of latent variables that minimizes the model error (PRESS).  In CR a search is

made over two variables: the number of latent variables and the continuum parameter.  It is

possible to view the PRESS as a function of the number of LVs and the continuum

parameter as shown in Figure 2.3.  In the figure the height of the surface represents the

error for the model (PRESS) corresponding to the given number of latent variables and

power of the singular values.  The location of the PCR, PLS and MLR models is shown.

In the figure the power of the singular values has been varied from 8 (next to PCR) to 1/8

(next to MLR) in logarithmically spaced intervals.  In reality there is only one MLR model,

not 15 as suggested by the figure.  However, the error associated with this model has been
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repeated down the back right side of the figure for continuity.
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Figure 2.3  Continuum Regression PRESS Surface.

Figure 2.3 illustrates some of the features that are common to most CR PRESS

surfaces.  The level surface to the right in the figure, the "MLR plain", represents models

identified with so many latent variables that they have converged to the MLR solution and,

therefore, have the same model error.  As mentioned previously, all PLS and PCR

techniques converge to the MLR solution as latent variables are added.  The more

correlation (as opposed to variance) is factored in the regression, the faster the

convergence.  On the left of the figure are models with large error, the "PCR mountain",

identified with too few latent variables adequately describe the "true" regression vector.  In

between is a "valley of best models" that have minimum PRESS.  A search is performed to

find is the model that represents the "bottom" of the "valley", i.e., the model with the

minimum prediction error.

2.5  Data Pretreatment and Scaling

Before completely leaving the topics of PCA and the CR methods, a word about
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preprocessing of data is in order.  In particular, scaling of variables is very important

to PCA, CR and other eigenvalue analysis type methods.  Because the techniques

discussed here are linear, (with the exception of PLS with non-linear inner relationship),

linearization of the data can also be very important.  Finally, eliminating outliers in the

calibration set is also an important step in obtaining the optimally predictive model.

Scaling, outliers analysis and linearization all need to be done before any modeling.

Collectively these techniques are called preprocessing.  Each of them will be discussed in

turn in the following sections.

2.5.1  Types of Scaling

Scaling of variables is very important to methods such as PCA and CR because

eigenvectors will tend to be biased towards variables with larger numerical values.  This is

because numerically larger variables appear to be associated with greater amounts of

variance (larger eigenvalues).  For this reason, it is customary to introduce some type of

scaling that assures that the variables will have approximately equal weights in the

regression.

The two most common types of scaling are mean centering and autoscaling.  They are

typically used in different situations.  In mean centering, the mean of each data column is

subtracted off, leaving a data matrix where the mean of each variable is zero.  Autoscaling

is mean centering plus variance scaling.  After mean centering each variable is divided by

the original standard deviation.  The result is a matrix where all the columns have mean

zero and unit variance.  This leaves only information about the correlation between the

variables.  As mentioned previously, the covariance matrix of an autoscaled data set is

known as the correlation matrix.  There are ones on the diagonal (each variable is perfectly

correlated with itself) and numbers between -1 and 1 everywhere else.

Mean centering is very common with data set where every variable is in the same

units and/or have similar noise characteristics.  An example of this is spectroscopy, where
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all the variables are in units of absorbance and the noise level for each variable would

be expected to be the same.  Variables (wavelengths) with a larger absolute variance

will tend to be weighted more heavily in the PCA or CR models but these variables will

also tend to contain relatively more information concerning any variation in the system.

Thus the numerical bias from the scaling actually can serve a useful purpose.

Autoscaling is often used when the variables in a data set have different units and

possibly widely different noise characteristics.  Many chemical process systems are good

examples of this.  The variables can include a wide variety of measurements such as

temperature (degrees C), power input (watts), fluid concentrations (moles/l) and tank levels

(centimeters).  The use of this technique implies that each of the variables are of equal

importance over their range in the calibration data.  Given no other information, this is

generally a good starting point.

Other scalings, where the modeler chooses the scaling factors for each variable

individually, are also used.  As an example, if some variables are thought to be inherently

more important based on physical reasons, they can be weighted more heavily.  If the data

set appears to be atypical, in that some variables would normally vary more or less than the

observed variance in the sample set, scaling the variables to "percent of full scale" might

also be a good choice.

In some situations it is not easy to decide what scaling is best, and it may come down

to comparing the results of modeling with different scalings.  The effect of scaling on PCA

modeling results is considered further in Appendix I.  The effect of scaling on the fault

detection power of PCA models is considered in Chapters 3 and 4.

2.5.2  Outliers Analysis

Outliers, samples that are inconsistent with the majority of the data set, can also be a

source of error when developing regression models.  The modeler should try to remove

any such bad data before building PCA or CR models.  This is important because outliers
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have a great deal of "leverage" on the data or regression models and can change them

significantly.  This, of course, will result in misleading models.  

There are several methods which may be used to screen data for outliers.  In the

simplest case, this can be done by simply "eyeballing" the data.  Often, outliers are quite

obvious.  PCA can be used on data sets, before any final models are formed, to detect

outliers.  Typically, outliers will have either very large Q values or there will be principal

components where only one or a few samples will have a very large score.  Finally, there

are also more formal statistical methods for detecting outliers, such as those given in the

paper by Lorber (1989).
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2.5.3  Linearization

As mentioned in section 2.3.3, the PCA and CR techniques are linear, and as such,

will not provide good models of highly non-linear data.  If the functionality of the non-

linearities is known, it is best to pretreat these variables so that the resulting variables are

linear.  Sometimes a linearizing function can be determined from theoretical considerations.

In other instances, a linearizing function may be arrived at by  inspection.  In other

instances an approximately linearizing function may be found through an iterative search,

such as the approach demonstrated by Parazoglu (1990).  In any case, linearization may

greatly improve calibration models.  It is demonstrated in Chapter 5, however, that in some

instances non-linear models will have better prediction abilities than linear models based on

linearized data.

2.6  Statistical Process Control

An excellent review of the most widely used techniques in SPC is provided in the

reference by Jackson (1976).  Many texts are also available on the subject, including the

recent one by Wadsworth et. al. (1986).  This section gives the a brief introduction to the

field of SPC.  It is not  intended to be comprehensive.  For further information the

references above should be consulted.  

SPC got its start in the 1930s when Walter Shewart developed the first control chart

(Shewart 1931).  This chart was formed by plotting the deviation from the normal mean of

a process variable.  The chart also contained two control limit lines that were placed three

standard deviations from the mean.  Since the probability that any sample from the parent

distribution would be outside the limits (given that the distribution is normal) is only .003,

it was assumed that any sample falling outside the limits indicated a change in the process

mean.  The sensitivity of the chart to changes in the process mean could be increased by

plotting the average of groups of samples.  This also has the benefit of strengthening the
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normality assumption, since the distribution of averages is normal regardless of the

parent distribution.  This type of control chart, commonly called a Shewart Chart, is

still in wide usage today.  Shewart charts can also be constructed for the range and variance

for the sample sets.

 There are many variations on Shewart charts, but they are all time independent.  By

time independent it is meant that the samples are assumed independent of one another and

no information from past samples is considered.  There are many time dependent chart

techniques, however, that do consider past information.  Two of the most common are

Cumulative Sum (Cusum) and Exponentially Weighted Moving Average (EWMA) charts.

A cusum chart is formed by calculating the cumulative sum of the deviations from the

process mean and plotting this sum.  If a process experiences a shift in mean the cusum

will start to drift rapidly.  This generally provides a more sensitive indicator of change in

mean than a Shewart chart.  Cusum type charts generally incorporate a V-mask to specify

the operating limits, as shown in Figure 2.4.  The control limits are specified by the lead

distance d and the angle Θ.  In the figure the lead distance is 5 and tan(Θ) is .40.  The

actual values of the limits are generally determined from Average Run Length (ARL)

specifications.  The ARL is defined as the average number of observations required to

detect a specified change in the process mean.  If any observations are found outside the V-

mask, such as observation 18 in the figure, the process is deemed out-of-control and in

need of adjustment.  The V-mask is a graphical approach, but if an algorithmic approach is

desired the lead distance and mask angle can be used to calculate the parameters in a

numerical algorithm which performs the same function as the V-mask.

In EWMA charts the current point is the weighted average Zt of all previous samples

in the process run:

Zt = γXt + (1-γ)Zt-1 (2.64)
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where γ is the weighting coefficient (0<γ<1) and Xt is the current value of the

process variable being monitored.  Anyone with experience in digital filtering will

recognize this is very similar to a first order filter with time constant proportional to ln(1/γ).

Control limits on EWMA charts are generally multiples of (γ/(2-γ))1/2 times the standard

deviation of the calibration data.  Typically the value of γ is about .2.  If the value of the

weighting parameter was set to γ = 1 the resulting chart would be equivalent to a Shewart

chart.
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Figure 2.4.  Cumulative Sum Chart.

Multivariate adaptations of SPC techniques, or MSPC, are still relatively new, with

the work of Jackson (1979, 1980, 1981A, 1981B) being the major exception.  In fact, a

review article in the Journal of Quality Technology (Gibra, 1975) makes no mention of

multivariate analysis in SPC with the exception of some work directly related to that of

Jackson.  Jackson used PCA to form multivariate versions Shewart charts.  Single

variables were replaced with PCA scores, residuals (Q) and sum of scores (T2) values as

indicated in section 2.1.
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By 1980, more publications concerning multivariate adaptations of SPC were

beginning to appear (Vance, 1983).  The first article concerning a truly multivariate

adaptation of cusum charts was published by Woodall and Ncube (1985) and has led to

two more (Healy 1987 and Crosier 1988).  Applications of PCA have appeared recently in

Wise and McMakin (1988), Wise et. al. (1988), Wise and Ricker (1989), Wise, Ricker and

Veltkamp (1989), MacGregor (1989), MacGregor (1990) and Kresta, MacGregor and

Marlin (1990).

The problem of correlated observations is also beginning to be addressed by the SPC

literature.  The most common procedure is to propose a model of the Autorecursive Moving

Average (ARMA) type described by Box and Jenkins (1970).  Under appropriate

conditions the residuals of the ARMA model can be modelled as white noise and control

limits can then be set in a manner similar to that shown for PCA residuals in section 2.1.3.

This is the approach in the paper by Alt et. al. (1977) and the approach of Harris (1989).

As a final note in this section, the question may arise concerning the interface between

SPC and the type of process control generally studied by engineers.  MacGregor (1988)

has considered this topic extensively and has concluded that there is a very important area

of overlap between these two disciplines.  That area is on-line quality control.  SPC and

process control are simply two ways of approaching the same problem.  The problem is

that the personnel in each of the disciplines does not fully understand the techniques used

by the other.  MacGregor points out that there is much that the process control engineer can

learn from SPC methods.  "Aside from providing a procedure to decide on when to apply

control actions to a process, SPC charts are invaluable as diagnostic tools.  They highlight

the periods where process upsets have occurred, and by analyzing the process data in these

periods one can often pinpoint the cause of the disturbances and perhaps eliminate or

minimize such disturbances in the future.  Of course, this is where real process

improvement is made."
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2.7  Process Models

There are many types of process models in use today.  In the following sections a

few of these models that are pertinent to this work will be reviewed.  This includes state-

space, Finite Impulse Response (FIR) and Auto-Regressive eXtensive variable (ARX)

models.

2.7.1  State-Space Models

State space models are well described in several texts on process control.  This

includes the works by Sage and White (1977) and Kwakernaak and Sivan (1972) which

emphasize continuous time systems, and that of Åstrom and Wittenmark (1984) which

emphasizes discrete systems.  A brief review of the state space model format follows.

State-space models are characterized by a set of state variables which capture the

state, or essential, information of the process system, and a set of measurement variables,

which correspond to the actual measurements from the process.  The discrete form of the

state space model is

x(k+1) = Φx(k) + Γu(k) + ν(k) (2.65)

y(k) = Cx(k) + Du(k) + e(k) (2.66)

Equation (2.65) is commonly referred to as the state equation, while equation (2.66) is the

measurement equation.  Assuming that the process has n states, r inputs and p

measurements, then in the state equation, x(k) is the (n by 1) vector of state variables at

time k, u(k) is the (r by 1) vector of process inputs at time k, Φ is the (n by n) state

transition matrix which determines the effect of the states at time k on the states at time k +

1, Γ is the (n by r) input matrix which determines the effect of the inputs at time k on the

states at time k + 1 and ν(k) is the (n by 1) vector of state disturbances at time k.  In the
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measurement equation, y(k) is the (p by 1) vector of process measurements at time k,

C is the (p by n) measurement matrix which describes how the states relate to the

measured outputs, D is the (p by r) feed through matrix, which describes the direct effect

of the process inputs on the measured outputs and e(k) is the vector of measurement noise

at time (k).  For most processes D is zero; process inputs rarely have an instantaneous

effect on the process outputs.  The dimension of the state space can be greater than, less

than or equal to the dimension of the measurement space.

The state space model format is convenient for several reasons which will be

important in later sections.  The model formulations allows for flexibility concerning the

number of measurements and process states.  For instance, the number of states can be

greater or less than the number of measurements, provided that the matrices in equations

(2.65) and (2.66) are sized correctly.  The case where the process measurements are

identical to the process states is also handled easily by making C equal to the identity

matrix.  The model form is also has the additional feature that it distinguishes between state

disturbances and measurement noise.

State-space models grew out of the solutions to sets of differential equations which

describe the way particular systems operate.  In some state space models, for instance,

some of the states will be derivatives of other states.  As such, many state space models are

derived directly from theory.  The primary interest in state-space models from the point of

view of this document involves the relationship between the state-space and PCA approach

to process modeling.  This issue will be considered further in Chapter 3.

2.7.2  Finite Impulse Response (FIR) Models

There is a renewed interest in FIR models of late, primarily because several popular

model-based controller design methods depend on FIR process models (Prett et. al. 1989).

In an FIR model the process output is considered to be a function of past values of the

process input only:
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y(k) = b0u(k) + b1u(k-1) + b2u(k-2) + ... + bn(k-n) (2.67)

The model of equation (2.67) includes a feed-through term (b0), which is equivalent to a

non-zero D matrix in the state-space format.  If the model of the system included time

delays, some additional initial terms would be zero, up to the number of sample periods of

the delay.  This relationship of (2.67) is perhaps more conveniently expressed in shift

operator form.  Starting from the definition of the forward shift operator q

q(x(k)) = x(k+1) (2.68)

then the backward shift operator q-1 is defined as

q-1(x(k)) = x(k-1) (2.69)

The relationship of equation (2.67) can be rewritten as a polynomial in q-1, B(q).  (Note

that the superscript -1 will be dropped from the notation for B polynomials.)

y(k) = B(q)u(k) (2.70)

where the polynomial B(q) is of the form

B(q) = b0q0 + b1q-1 + b2q-2 + ... + bnq-n (2.71)

As mentioned above, for a system with time delays, some of the initial terms in the B

polynomial may be zero.

The FIR models shown above are for single input/single output (SISO) systems.  The

FIR model form can, however, include B polynomials for multiple inputs.  This allows for

modeling of multiple input/single output (MISO) systems.  If multiple input/multiple output

models are required it is common to use a collection of MISO models.
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A typical FIR model might have 25-100 coefficients, i.e., the order of the

polynomial B(q) might be 25 - 1004.  FIR models are often referred to as non-

parametric because they make no assumption concerning the underlying mechanistic

principles of the true process, with the exception that the FIR model form can fit only

processes that are asymptotically stable5.  An FIR model is thus not a fit of parameters to a

predetermined form.  In order for an FIR model to be accurate, however, enough terms

must be included to cover the time response of the system in question.  For instance, if the

system to be modelled takes 50 sample periods to come to steady state, the order of B(q)

must be ~50 in order to obtain an accurate model.  It is also possible to change the sample

rate in order to adjust the number of FIR terms needed to describe the process.

2.7.3  Auto-Regressive Extensive Variable (ARX) Models

In contrast to FIR models, in ARX models the current output is considered to be a

function of both past values of the input and output.  Thus the ARX model takes the form

y(k) = a1y(k-1) + ... + amy(k-m) + b1u(k-1) + ... + bn(k-n) (2.72)

This is more conveniently expressed in shift operator form as

A(q)y(k) = B(q)u(k - d) (2.73)

Here the d term has been added to indicate a possible pure delay of d time units.

Unlike FIR models, the ARX model is a parametric form.  Once the orders of the A

and B polynomials are fixed, there is a limited number of plant behaviors which can be

modelled.  For instance, if the order of A is taken to be 1, and the order of B is taken as 0,

                                                
4See, for instance, the application of FIR models to an anerobic wastewater treatment process in

Ricker (1988).
5An exception to this is the FIR form proposed by Morari (1990) that can model processes with pure

integrators.
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the resulting (stable) processes must either rise exponentially to the steady state value

or overshoot it at the first step and approach it with an exponentially decaying

oscillation.

For a SISO or MISO process, the ARX form given in (2.73) can be shown to be

equivalent to the state space form of equations (2.65) and (2.66).  The transformation

between model forms is not unique, however.  There are, in fact, an infinite number of

state-space models which have the same input/output behavior as a given ARX system.

2.8  Common Process Model Identification Methods

In this section some common methods for identifying FIR and ARX models will be

considered.  The methods outlined here will be used as the "yardstick" for assessing the

relative success or failure of the CR method.

2.8.1  FIR Model Identification

As mentioned in the introductory chapter, there is little information available

concerning the identification of FIR models.  It appears that most FIR models are identified

directly from step or pulse tests and smoothed based on engineering judgement.  However,

it is difficult to do a comparison with this as the reference method.  Instead, MLR will be

the standard for identification of FIR models.

Consider the FIR model of equation (2.56).  Let Θ be the vector of b parameters that

must be estimated (following the notation in Ljung, 1987), that is:

Θ = [b0  b1  b2  ...  bn] (2.74)

Assume a data set has been obtained from the system to be modelled:

ZN = [y(1) u(1) y(2) u(2) ... y(N) u(N)] (2.75)

Before MLR can be used to estimate Θ, the input/output data must be rewritten into a
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matrix which is consistent with the proposed model.  In this case the matrix of inputs

is:

φ(t) = [u(t)  u(t-1) ... u(t-n)] (2.76)

where φ(t) is the tth (1 by n) row vector of the φ matrix.  The MLR estimate of Θ can now    

be calculated from the normal equations:

 Θ^   = (φTφ)-1φTy (2.77)

Estimates of the output variable are obtained from:

 y
^

  = φ Θ^  (2.78)

Estimates of Θ obtained this way, however, can be very inaccurate, depending upon

the condition of φ.  If φ is nearly rank deficient, i. e. if the matrix φTφ has some very small

eigenvalues, the resulting Θ can be corrupted by noise.  Use of this method often leads to

"ringing" in the coefficients of Θ: the coefficients will be alternately high and low relative to

the true coefficients.

When identifying systems with a delay, an estimate of the delay is usually obtained

prior to forming the final model and the parameter vector and φ matrix are formed

accordingly.  If a delay exists and it is not properly accounted for, then some of the

coefficients in Θ which are to be estimated are actually zero.  In this case, it is likely that in

the estimation procedure these coefficients will deviate substantially from zero because of

spurious correlation with the process output.  The resulting model will then be less accurate

than it would have been had the coefficients been set to zero to begin with.  In Chapter 5 it

will be shown that incorrect estimation of the time delay has a greater impact on model

accuracy when the CR method is used for identification instead of MLR.  
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Estimates of the the process time delay can be obtained by cross-correlation of

the input/output data (see for instance Ljung, 1987).  In this procedure the correlation

between the process inputs and the output at later times is determined.  The process time

delay is estimated as the minimum time shift for which a significant correlation is obtained

between input and output.  It is also possible to obtain estimates of the system time delay

by cross-validation of a series of FIR models with incremental changes in the assumed

delay.  In this method the model with the best predictive ability would be assumed to have

the correct system delay.

2.8.2  MLR and Instrumental Variables for ARX Models

ARX models are typically identified either by MLR or the method of instrumental

variables (IV method).  Identification by MLR follows the general procedure outlined

above with appropriate changes in the φ and Θ matrices.

Consider the ARX model of equation (2.72).  From this it can be seen that the

parameter vector will be of the form:

Θ = [a1 ...  am b0 b1 ... bn] (2.79)

The matrix of inputs and lagged outputs will be

φ(t) = [y(t-1) ... y(t-m) u(t)  u(t-1) ... u(t-n)] (2.80)

The MLR estimate of Q can now be obtained as in (2.72), and prediction will follow as

shown in (2.73).

It should be noted that the normal MLR equation for estimation of the parameters in

ARX models is typically much better conditioned than the corresponding regression for

FIR models.  This is, in part, due to the smaller number of parameters typically estimated

and the lack of correlation in the parameters.  A particular problem in the estimation of
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ARX models, however, is the presence of unmodeled disturbances.  It is shown in

Ljung (1987) that in these cases that the estimate of Θ will not tend towards the true

value even for very large numbers of samples due to the correlation between the

disturbance and φ.  It this author's experience that the models obtained using data with

unmodeled disturbances are typically biased towards the lagged outputs over the input

variables, i. e. the coefficients of the A polynomial are larger at the expense of the

coefficients of the B polynomial.  The IV method was developed, in part, to address this

concern (See Ljung, 1987).

In the IV method the lagged outputs in the φ matrix are replaced with the instrumental

variables, creating a new matrix

ς(t) = [ψ(t-1) ... ψ(t-m) u(t) u(t-1) ... u(t-n)] (2.81)

The objective of this is to remove the correlation found between the disturbance and φ.

Whereas the MLR solution to the identification problem could be written as

Θ  such that  φT[y - φΘ] = 0 (2.82)

The problem that must be solved for the IV approach is

Θ  such that  ςT[y - φΘ] = 0 (2.83)

The solution to (2.83) is obtained from

 Θ^   = (ςTφ)-1ςTy (2.84)

provided, of course, that the inverse of ςTφ exists.

The remaining question here, of course, is how to generate the instrumental variables.

There are many ways to do this, as pointed out in Ljung (1987) and in Soderstrom and
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Stoica (1983).  Generally, the instruments are generated by putting the inputs

through a linear filter.  There are many ways to choose this filter, but a common

choice is to use an existing model of the process as the filter.  This is the basis of the IV

four step method (IV4).    The first step in the IV4 method is to obtain an ARX process

model using the conventional MLR method.  In the second step this model is used to

generate the instruments which are then used to obtain a model estimate as in equation

(2.84).  In step 3 an auto-regressive (AR) model is fit to the model residuals from the

previous step.  In the fourth step the AR model is used to filter the instruments from the

second step and the model is estimated once more using equation (2.84).  It can be shown

(as in Ljung 1987) that as the number of calibration samples becomes infinite, this

procedure results in an unbiased model.  This is a consequence of the way the method uses

instruments which, (unlike φ) are uncorrelated with the process noise.

In this work MLR will be the reference method for ARX model identification.  Some

comparison to the IV4 method for ARX identification will also be made.

2.9  The Liquid-Fed Ceramic Melter

The LFCM is the reference process in the United States for solidifying the liquid

wastes produced during the reprocessing of nuclear fuels (Burkholder and Jarrett 1986).  A

simple schematic of the LFCM operated at West Valley Nuclear Services Co. Inc. is shown

in Figure 2.5.  A slurry, consisting of reprocessing wastes mixed with glass forming

chemicals, is fed onto the surface of the molten glass pool which is heated by passing a

current between pairs of the three electrodes.  Volatiles, consisting primarily of water and

acids, are driven off and treated in an off-gas system which is not shown.  The dried feed

which remains forms a "crust" or "cold cap" which melts continuously into the glass.

Glass is poured periodically from the melter through a riser section which is also not

shown.  This results in periodic fluctuations of the glass level.
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Figure 2.5.  Schematic Drawing of Liquid-Fed Ceramic Melter

The melter is monitored extensively (Barnes et. al. 1985).  Temperatures are

monitored at 20 locations within the molten glass pool and the resistance and power

dissipated between each of the electrode pairs is recorded.  Data is also taken on feed flow

rate and glass tank level.  In all, 29 variables are recorded.  The variables are keyed to their

TAG ID number at West Valley in Table 2.1.  As might be expected, many of the variables

are highly correlated.  PCA/PLS methods are more appropriate for data of this type than

methods that assume statistical independence of the variables.

In Table 2.1, variables 1-10 correspond to the east side of the melter (as positioned at

the West Valley site) while variables 11-20 correspond to the west side.  The temperature

variables are numbered sequentially starting with 1 and 11 near the bottom of the glass melt

on the east and west side, respectively, and increasing up to 10 and 20 in the plenum.

Variables 7-9 and 17-19 are in the cold cap region of the melt.  Fluctuations in the glass

level cause the cold cap to slide up and down the thermowells and can affect temperature

measurements in the region.  It is shown in Appendix I that glass level changes
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are a major source of variation in the melter data.

Table 2.1.  Connection Between Variable Numbers and West Valley TAG ID

    Variable         Number       Description        TAG       ID    

1-9 Glass Temp (C) TT--2011-TT--2019

10 Plenum Temp (C) TT--2010

11-19 Glass Temp (C) TT--2021-TT--2029

20 Plenum Temp (C) TT--2020

21-23 Power (kW) KT--2031-KT--2033

24-26 Resistance (Ω) RT--2031-RT--2033

27-28 Feed Rate (l/h) FT--1125/FT--2004

29 Glass Level (in.) LIX-2001

The melter data is currently recorded at 5 minute intervals, though the process is

actually sampled at a much faster rate.  Though 5 minutes may seem long for some

chemical processes, the LFCM is generally very slow to respond to setpoint changes or

disturbances and so the 5 minute sample time is appropriate.  The process time constant for

temperature changes associated with power setpoint changes is on the order of hours.  The

glass tank residence time is on the order of days.  Process data is stored on the WVNS

VAX system and has been accessible at the University of Washington via modem.



3.0               Process        Monitorin        g        with        PCA

In this chapter the role of PCA for process monitoring is considered in a fundamental

light.  Early studies, such as those in Wise and McMakin (1988), Wise et. al. (1988), Wise

and Ricker (1989) and in Appendix 16 of this work, indicated that in heavily instrumented

processes PCA appeared to capture the "essence" of the process variation.  While the PCA

loadings gave some information (sometimes quite ambiguous) about the correlation of

variables in the process, the scores seemed to indicate the "state" of the process.  This

chapter answers the question of the nature of the relationship.  Specifically, the relationship

between PCA and the state-space model format is considered.  The result is a theoretical

basis for PCA monitoring.

3.1  A Theoretical Basis for PCA Monitoring

Consider once again a linear, time-invariant (LTI), discrete, state-space process

model of the form:

x(k+1) = Φx(k) + Γu(k) + ν(k) (3.1)

y(k) = Cx(k) + Du(k) + e(k) (3.2)

where x(k) is the (n by 1) state vector at sampling period k, u(k) is the (r by 1) input

vector, and y(k) is the (p by 1) output measurement vector.  The vector ν(k) represents the

state noise or disturbance inputs; e(k) is measurement noise, which, for periods of

“normal” operation is assumed to be random with zero mean.  The Φ, Γ , C, and D

matrices are assumed to be constant.  Note that equation (3.1) is a recursive relationship

giving the state vector at sampling period k+1 in terms of the states and inputs at period k.

                                                
6Appendix 1 considers the usefulness of PCA for investigation of dynamic systems.  In addition, the

effect of scaling options is also considered.  Some of the examples in this chapter employ models developed
in Appendix 1, therefore, the reader may wish to review it before proceeding.
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Equation (3.2) shows how the measurements, y(k), are related to the states, inputs,

and measurement noise.  

For the purposes of this chapter, we assume that D = 0, which implies that there is no

instantaneous effect of changes in the inputs, u(k), on the process measurements.  Due to

the delay caused by sampling, this is a realistic assumption for most chemical processes.

If, however, D is known (and non-zero), the effect of the term Du(k) in equation (3.2) can

be subtracted from y(k), and the methods described below can still be applied in a

straightforward manner.

Note that although the number of state variables required to describe a system, n, is a

fundamental property of the system.  This is typically referred to as the system order.  On

the other hand, the coordinate system defining the numerical values of the states may be

chosen arbitrarily.  This property of the model is exploited in the next section.

3.1.1  Immediately Observable States

We define the “immediately observable” states as the subset of the n  state variables

that can be estimated from a single sample of the p outputs.  From an examination of

equation (3.2), it is easy to see that the number of immediately observable states is equal to

the rank of C.  Let rank(C)=q and note that q ≤ min(n,p).

One can transform the state-space model given in equations (3.1) and (3.2) to a form

in which the immediately observable states are easy to calculate.  We first perform a

singular-value decomposition on the C matrix:

C = UΣVT (3.3)

In this case, U is p by p, V is n by n, and Σ has the form:

Σ =   
S 0
0 0       for   q < p  and  q < n (3.4a)
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=   
S
0             for  q < p  and  q = n (3.4b)

=  [ ]S 0          for  q = p  and  q < n (3.4c)

where S  is a q by q diagonal matrix of singular values.  Define a new matrix, Q, as

follows:

Q = V 



S-1 0

0 I        for   q < n (3.5a)

= VS-1                   for   q = n (3.5b)

where in equation (3.5a), the matrix in brackets is n by n, and I is an identity matrix of size

n-q.  Note that Q is defined such that Q-1 exists in all cases.  We can now define a new

coordinate system for the state variables, which is related to the original one according to:

xr(k) = Q-1x(k), where xr is the state vector in the new (rotated) coordinate system.

Substituting x(k) = Qxr(k) into equations (3.1) and (3.2), we obtain (for D = 0):

xr(k+1) = Φrxr(k) + Γru(k) + Q-1ν(k) (3.6)

y(k) = Crxr(k) + e(k) (3.7)

where Φr = Q-1ΦQ (3.8)

Γr = Q-1Γ (3.9)

Cr = U   
I 0
0 0       for   q < p  and  q < n (3.10a)

= U   
I
0             for  q < p  and  q = n (3.10b)

= U  [ ]I 0          for  q = p  and  q < n (3.10c)
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In equation (3.10), the matrix in brackets is p by n in all cases.  Note that the

new state-space model has the same form as that in equations (3.1) and (3.2), and the

input and output behavior is also identical.  Thus, the only effect of the change of

coordinates is in the numerical values of the states.  

As is apparent from equation (3.7), only the first q states in xr have a direct effect on

the outputs.  Let xq(k) be the vector of the first q variables in xr(k), i.e., the immediately

observable states.  Then equation (3.7) can be re-written as:

y(k) = Pqxq(k)  +  e(k) (3.11)

 

where Pq is an orthonormal matrix defined as:

Pq = U   
I
0             for  q < p (3.12a)

= U                    for  q = p (3.12b)

Given a sample of the outputs, y(k), we can use equation (3.11) to estimate xq(k) as

follows:

x
^

 q(k) = PqTy(k) (3.13)

The corresponding estimate of the measurement noise is:

e
^
(k)  = y(k) - y

^
(k) 

= (I - PqPqT) y(k) (3.14)

where

y
^

(k) = Pqx
^

 q(k)
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= PqPqTy(k) (3.15)

As discussed, e.g., by Ricker (1990), equation (3.13) provides an optimal estimate

of the states in the sense that it minimizes e
^
 T(k)e

^
(k) , i.e., it is the solution of the linear-

least-squares problem.  Note that when q = p, PqPqT = I, and the estimated measurement

noise will be zero, regardless of the values of the outputs.  In this case, the estimated

measurement noise cannot provide useful diagnostic information about the system.

Otherwise, however, we can compare the current value of e
^
(k)  to our expectations (based

on a statistical analysis of past process behavior).  As is shown in the next section, this

forms the basis for PCA monitoring of the process.  The most favorable situation occurs

when p >> q, and, in particular, when p >> q = n.  In this case, a fault in a single

measurement is most likely to show up in the residuals, rather than in the estimated states.

The state-estimation approach described above is quite different from that used in the

development of the Kalman Filter (see, e.g., Ricker 1990 or Åstrom and Wittenmark

1984).  The goal of the Kalman Filter is to obtain estimates of all n  of the states.  In the

present case, this can only happen when q = n.  Furthermore, the Kalman Filter is designed

to minimize the squared error in the state estimates (not the estimated measurement noise).

To do so, the filter compensates for the statistical characteristics of both the measurement

noise, e(k), and the state disturbances, ν(k).  Its main disadvantage is that it requires a

complete dynamic model of the system (i.e., the Φ and Γ matrices in addition to the C

matrix), and one must specify the expectations of e(k) and ν(k).  The large amount of

required information is difficult to obtain for a chemical process of typical complexity.

Equations (3.15) to (3.15), on the other hand, are essentially a simpler “filter”, which can

be designed based on a knowledge of C only.  
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3.1.2  The Basis for PCA Monitoring

Imagine that we have an immediately-observable process that can be modeled by

equations (3.1) and (3.2).    Let n be the number of states needed to describe the process

dynamics.  Assume that we have collected m “calibration” samples of the p outputs,

forming the m by p matrix, Y (with m ≥p).  Then according to equation (3.2), the

relationship of the sampled outputs to the states and measurement noise is:

Y  =  XCT + E (3.16)

where X  is an m by n matrix of state variables (in which each row is the vector of state

variables at a particular sampling period), and E is an m by p matrix of measurement noise

signals.  Both X and E are unknown, and in the general case, rank(X)=n and rank(E)=p.  

If we perform a PCA decomposition on Y, retaining q latent variables, we obtain:

Y  =  TqPqT + Ep-q (3.17)

Comparing this to equations (3.9) and (3.16), we see that PCA can be interpreted as a

state-space model, with Tq representing estimates of the q immediately observable state

variables (in a particular coordinate system) at each sampling period, and Pq taking the

place of the C matrix.  Since Pq is orthonormal, PCA automatically gives us a state-space

model in the form of equation (3.9).  Note, however, that rank(Ep-q)=p-q.  In other words,

unless the “true” measurement noise, E, is also rank p-q, the PCA estimate will be biased.

This may or may not be a problem in practice, depending on the nature of the experiments

used to obtain Y, as discussed in the next section.

Let us assume for the moment that Pq is an accurate representation of the true C

matrix (which implies that we know the number of immediately observable states, q).  The

PCA residual for a given output sample, y(k), is defined as:
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r(k) = (I - PqPqT)y(k) (3.18)

Thus the PCA residuals are identical to the estimated measurement noise as defined in

equation (3.14).  In other words, if the model is correct, the residuals are a function of e(k)

only, regardless of the system dynamics.  Since we have stipulated that, under normal

conditions, e(k) is random with zero mean (and uncorrelated with previous values of e),

we can use well-established statistical methods to monitor r(k) and verify that it indeed

satisfies this condition.

3.1.3  Obtaining an Accurate Estimate of Pq

The success or failure of PCA monitoring depends, to a large extent, on the accuracy

of the model, i.e., the matrix Pq.  Normally, this matrix must be estimated from the

calibration data Y, (since it is rare that an accurate theoretical model is available), as

outlined in the previous section.  It is clear that the most favorable situation occurs when

the term XCT in equation (3.16) is large relative to the noise, E.  If the system is

controllable (see, e.g., Åstrom and Wittenmark 1984), then it is possible to carry out an

experiment in which the input variables, u(k), are varied so as to achieve a good signal-to-

noise ratio for all n state variables.  In practice, however, good estimates of Pq are obtained

even for very noisy systems provided that the noise is uncorrelated, i.e., when the singular

values of XCT are large relative to the singular values of E.

On the other hand, if u is allowed to vary “naturally”, or if the system includes states

that are accessible only through the disturbance vector, ν, then it will not be possible to

guarantee adequate excitation of all n states.  For example, if calibration data were collected

during a period when ν was relatively small, the resulting estimate of Pk might not reflect

the influence of all the states.  If this Pk were then used to filter new data, as in equation

(3.14), and ν suddenly became large, the value of e
^
(k)  might signal a fault.    This may or

may not be desirable depending upon the situation.  If the purpose of the monitoring were
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to detect disturbances, such a model would be effective.  If the objective were to

detect sensor failures and fundamental process changes, however, the model would

give false alarms when disturbances occurred.

3.1.4  Using the PCA Residuals

Once an estimate of Pk is obtained, it can be used to calculate residuals as shown in

equation (3.18).  As shown in Chapter 2, confidence limits can be calculated for the Q

statistic, (the total magnitude of the residual), as well as for the residual on any individual

variable.  As pointed out by Jensen and Solomon (1972), in practice the underlying

distribution of the residuals of individual variables can vary substantially from Gaussian

without affecting the results.

 3.2  Some Examples of PCA Monitoring

In this section we will consider two examples of the use of PCA for process

monitoring.  In the first case, a state-space model will be used to generate synthetic process

data from which a PCA model will be identified.  Examples using this model will

demonstrate that when the fundamental assumption of PCA monitoring is correct, i.e.,

when there are more measurements than states, then the PCA residuals are indeed

uncorrelated.  In the second case, a PCA model will be identified from West Valley LFCM

data.  Here the actual number of states is not known, but will be estimated from the data.

In fact, using any number of states less than the number of measurements can regarded as

an approximation.  In spite of this, it will be demonstrated that the PCA monitoring method

is still effective.

3.2.1  PCA Monitoring Example Using Synthetic Data

As our first example we will consider a process with r=5 inputs, n=5 states and p=10

measurements.  The Φ, Γ and C matrices for the process are given below in Tables 3.1 to

3.3.  These matrices were generated randomly, although care was taken to assure that the

resulting system was asymptotically stable and the non-zero singular values of the
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matrices were all relatively large.  The D matrix is zero.  Note that q=n in this case.

Table 3.1.  Φ Matrix for Example System.

 0.3696   -0.2761   -0.0582   -0.6364    0.1188
 0.0216   -0.4511   -0.2586    0.3415    0.4932
 0.6204   -0.0227    0.4012    0.2988    0.0633
-0.2987   -0.1517    0.5948   -0.1786    0.3078
 0.0295    0.4772   -0.0921   -0.1311    0.5786

Table 3.2.  Γ Matrix for Example System.

 0.0955   -0.6535   -0.0114    0.3726    0.0330
-0.3014   -0.2935    0.5805   -0.2808    0.2099
-0.2041   -0.0979   -0.4576   -0.2390    0.4931
 0.3669    0.1920    0.1957    0.2874    0.6066
 0.5820   -0.2586   -0.0619   -0.4934    0.0089

Table 3.3. C Matrix for Example System.

 0.4219   -0.1386   -0.0126   -0.0922   -0.0189
 0.0998   -0.0273   -0.1266   -0.4567    0.1252
 0.0052    0.1546    0.5789    0.0325    0.1544
 0.3851    0.0766   -0.2299    0.0466    0.3672
 0.0888    0.0554    0.2707    0.2040    0.4264
-0.1016   -0.3428    0.3047   -0.3706   -0.1408
-0.0620   -0.6174    0.0411    0.2417    0.1964
 0.0498   -0.1887    0.0267   -0.2905    0.1761
-0.0243   -0.0041    0.0180   -0.2449    0.3680
 0.4857   -0.0906    0.1995   -0.0216   -0.2322

The example process was driven by white noise of unit variance to produce a Y

matrix consisting of 1000 samples of the 10 outputs.  Uncorrelated measurement noise was

added to each output sample.  The variance of the noise was equal to the variance of the

output for each output variable (i.e., the resulting output was 50% deterministic variation

and 50% measurement noise).  The process outputs were scaled to zero mean and unit

variance (autoscaled) and a PCA model was obtained according to equation (3.17) with

q=5.  The variance captured by the PCA model is given in Table 3.4, and the loadings

vectors retained in the PCA model are given in Table 3.5.

Table 3.4.  Variance Captured by PCA Model of Example Process Output.
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    PC#       Eigval  %Variance  %TotVar   
 1.0000    2.0645   20.6454   20.6454
 2.0000    1.6056   16.0561   36.7016
 3.0000    1.3760   13.7602   50.4618
 4.0000    1.3585   13.5847   64.0465
 5.0000    1.0537   10.5374   74.5838
 6.0000    0.5714    5.7135   80.2973
 7.0000    0.5308    5.3079   85.6053
 8.0000    0.5182    5.1817   90.7869
 9.0000    0.4777    4.7768   95.5637
10.0000    0.4436    4.4363  100.0000

Here, the correct number of PCs to retain in the model is known, i.e., 5.  In practice

this would have to be determined from cross-validation or comparison to the expected ratio

of successive eigenvalues for noisy data, as discussed previously.

Table 3.5. PCA Loadings Vectors for Example System.

 0.3904   -0.2121    0.4830   -0.0758    0.0769
 0.4309    0.2533   -0.0102    0.2610   -0.3237
-0.0060   -0.3306   -0.2772   -0.5159   -0.3525
 0.3321   -0.4258    0.0398    0.3923    0.1404
 0.1261   -0.5176   -0.3749   -0.2228    0.0726
 0.1761    0.4600   -0.0287   -0.5113   -0.0541
 0.1557    0.0731   -0.0823   -0.2425    0.8346
 0.5165    0.2522   -0.0760   -0.0947    0.0129
 0.4166    0.0031   -0.4885    0.1319   -0.0968
 0.2002   -0.2276    0.5437   -0.3315   -0.1760

A new data set, X, of 1000 samples was generated using the same process model and

a new input sequence, which in this case was a low-frequency psuedo-random binary

sequence (PRBS).  The PCA model was applied to the outputs as in equation (2.10), and a

residuals matrix was generated.  The autocorrelation function was calculated for the raw

outputs and the residuals.  These are plotted in Figure 3.1, which clearly shows that, while

the outputs are correlated in time, the residuals are not, which is the expected result when

the Pk matrix obtained by PCA is an accurate representation of the original C matrix.
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Figure 3.1.  Autocorrelation Function for Outputs and Residuals for Test Data Set.

Because the residuals are not autocorrelated, the statistical tests in equations (2.19)

and (2.22) can be used to test the residuals for faults and disturbances7.  As mentioned

previously, a sample “window width” must be chosen, and the desired confidence limits

must be set before the test limits can be calculated.

For the example process we will choose, somewhat arbitrarily, a 20 sample window

and 99% confidence limits.  Thus the relevant statistic for detection of changes in the

variance of the residuals is F19,994,.01 = 1.91 since we have 1000 samples in the original

data, 20 in the new test sets, and desire 99% confidence limits.  For changes in mean of the

residuals t1015 = 2.326 and it is possible to calculate the change in mean that is just

significant with (2.22) since the variances are known from (2.17).  The detection limits can

now be converted from the residual space back to the original variable space using (2.23).

The results are shown in Figure 3.2, which gives the detection limits for changes in the

                                                
7It is also possible to develop detection limits based on the T2 test for residuals given in equations

(2.23) to (2.29).  This is done for this example in Appendix 3.  It has been found that the T2 test for
residuals is not as sensitive to failures as the simpler t- and F-based tests based tests used here.  The reasons
for this are discussed in Appendix 3, and some results from simulations are shown.
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mean and standard deviation of the measurement noise for each process sensor

(variable number) in the original measurement units.  
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Figure 3.2.  Detection Limits for Changes in Noise Mean and Standard Deviation in
Original Units.

The detection limits shown in Figure 3.2 illustrate some important points.  Note that

variable number 7 has by far the worst detection limits for both mean and variance changes.

A review of the loadings given in Table 3.5, however, shows that it is almost entirely

included in the PCA model, i.e., the sum of squared loadings for this variable in the

retained PCs is very nearly 1.  Variables that act nearly independently generally load

strongly into only one PC.  Thus, these variables tend to be either very strongly included in

the model or very weekly included, but not intermediate.  In any case, nearly independent

variables have large detection limits because they are not highly correlated to other

variables.  Much of the error on such a variable is attributed to variations in the states

(provided that the PC it is strongly loaded into is included in the model), and does not

appear as a residual.  This is easier to envision when one realizes that if a variable was



6

6

6

6

entirely included in the model (i.e., one of the states were defined as being equal to

the measured value), its residual would always be zero.  

On the other hand, measurements that have little influence on the state estimates also

tend to have poor detection limits.  The variables with the best detection limits are typically

those that are highly correlated with other variables, which tends to make them be included

in the model to an intermediate degree.  In the situation where a variable does not load into

the model at all, its residual variance is equal to its original variance.  For a variable like

this, standard SPC would work as well as MSPC.

3.2.2  PCA Monitoring Example Using LFCM Data

In this second example West Valley data from run SF-11 will be used.  Specifically,

the mean centered model indicated in Table A1.1 of the Appendix will be considered.  In

this case the first task is to determine the number of PCs to retain in the model.  As

mentioned previously, this can be done either through cross-validation or by considering

the ratios of successive eigenvalues.  Comparing the ratios it can be seen that it would be

logical to keep either 4 or 7 PCs.  In this case, we the example will be developed along

parallel lines for both of these choices of PCs.  This will allow observation of the effect of

changing the number of factors in the model.

The autocorrelation function for the SF-11 data and the 4 and 7 PC residuals is

shown below in Figure 3.3.  The figure includes only variables 2, 4, 6, 8 and 10 for

clarity; the other variables showed similar behavior.  Note how the ACF of the raw data,

shown as solid lines, has a very long correlation time.  The amount of autocorrelation in the

4 PC residuals, shown as dotted lines, is much less but still significant.  The ACF of the 7

PC residuals, shown as the plus marks, shows very little correlation, however.  After the

first sample instant it is essentially zero.

Based on the calculated ACF it would be expected that the residuals of the 4 PC

model would not meet the criteria of random variables, and thus the statistical limits as
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calculated in the previous example would not apply.  The 7 PC model residuals,

however, should be much closer to the random variable assumption.
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Figure 3.3.  Autocorrelation Function of SF-11 Data and 4 and 7 PC Model Residuals.

It is generally found that the amount of autocorrelation in the residuals decreases as

the number of PCs retained in the model is increased, up to a point where the residuals

become essentially uncorrelated.  This makes sense from a physical standpoint.  Any

persistent change in one variable must eventually be seen in the variables in the surrounding

region, producing correlated outputs for neighboring variables.  PCA, of course, seeks to

build the correlation between variables into the model, leaving behind only random

fluctuations.  Large variations tend to be more persistent in time, affect many variables and

thus get captured in the first few PCs.  Smaller variations are less persistent, affect fewer

variables and thus are captured in later PCs.

As in the previous section, it is now possible to calculate the detection limits in terms

of the units of the original variables once the sample window size and the desired

confidence limits have been chosen.  Here again we will arbitrarily choose 20 samples (100
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minutes) and a confidence level of 99%.  The calculated detection limits for changes

in the mean are shown in Figure 3.4 for both the 4 and 7 PC models.  The

corresponding limits for changes in the variance are shown in Figure 3.5, where the limits

are actually shown in standard deviations rather than in units of variance.
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Figure 3.4.  Detection Limits for Changes in Mean Residual From Mean Centered SF-11
Data Using 4 and 7 Principal Component Models.

In Figures 3.4 and 3.5 it is apparent that the detection limits for all the variables are

not equal.  This would be expected based on physical arguments.  The detection limits for

the bulk glass variables are relatively small because because there are many nearly

redundant measurements made in close proximity.  Furthermore, these sensors very little

variance to begin with.  The plenum temperatures, however, vary widely and are measured

in only 2 locations, resulting in rather large detection limits.

The differences between the calculated limits for the 4 and 7 PC models is a result of

the changes in the amount that particular variables are included in the model depending

upon the number of PCs retained.  In the case of variable 10, when the 7 PC model is
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employed the variable is so strongly included in the model (sum of squared loadings

for this variable is 0.9941) that it essentially has no residual, and therefore it takes a

huge change in such a variable to make a significant difference.  In Figure 3.5, the limit for

this variable is off the chart at 169.  Some of the bulk glass temperature variable detection

limits are better in the 7 PC model because more of the correlation between these variables

shows up in PCs 5-7 than in the previous PCs, driving the detection limits down.
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Figure 3.5.  Detection Limits for Changes in Standard Deviation of Residual From SF-11
Data Using 4 and 7 Principal Component Models.

It should be noted that, while the 4 PC model looks much better in terms of detection

limits, the autocorrelation function of the 4 PC residuals shows much more correlation.

This will have the effect of invalidating the statistics that assume that the residuals are

random variables.  Thus we must strike a balance between the residual correlation and the

apparent detection power of the models.  In this case, one might expect that the 6 PC model

may be a much better choice, as it does not include the plenum temperatures to the extent

that the 7 PC model does, while still eliminating the bulk of the autocorrelation.  Inspection
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of the ACF of the 6 PC model residuals, however, shows that there is still a very

large amount of autocorrelation.

3.3  Effect of Scaling on PCA Monitoring

In order to better understand the effects of scaling on the PCA monitoring

effectiveness, the previous example using LFCM data with mean centering is now repeated

using autoscaling.  The variance captured by the PCA model is shown in Table A1.2.  The

ratio of successive eigenvalues again suggest that 4 or 7 PCs would be logical for this

model.  The ACF of the residuals was calculated for  PCA models using 4, 7 and 10 PCs.

Some representative ACFs are shown below in Figure 3.6 for the 4 and 7 PC model case,

and are compared to the ACF of the raw data.  It is apparent from Figure 3.6 that the mean

centering option is somewhat more effective at removing autocorrelation from the residuals

than the autoscaling.  Even the 10 PC residuals from autoscaling (not shown) were more

correlated than the 7 PC residuals from the mean centering.
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Figure 3.6.  Autocorrelation Function of SF-11 Data and 4 and 7 PC Model Residuals from
Autoscaled Data.

The reason that mean-centering removes the correlation from the PCA residuals more
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effectively than autoscaling in this situation becomes apparent after considering a

small thought experiment.  Imagine for a moment a data set where the variables have

widely different deterministic variances, but have added measurement noise of identical

magnitudes.  Furthermore, assume that the deterministic variation in the data set is confined

to a subspace of the data space, i.e., the data is deterministically rank deficient.  In this case

the autoscaling option would have the effect of increasing the variance of variables that are

mostly noise relative to those that are mostly deterministic variation.  This increases the

effective noise level of the data set.  Any PCA model (with a specified number of PCs)

formed from this data would, therefore, be more likely to capture noise in the model and,

thus, less likely to include all deterministic variation.  Any deterministic variation that is not

captured by the model will lead to autocorrelated residuals in the dynamic model case.

The theoretical detection limits for bias errors (changes in noise mean) and noise

errors (changes in noise variance) were calculated for the 4, 7 and 10 PC models and are

shown in Figures 3.7 and 3.8, respectively.  The calculated limits are very similar to those

calculated from the mean centered data in the previous section.  It is important to remember,

however, that the mean centered data has the autocorrelation in the variables more

effectively removed than in the autoscaled data.  Thus it would be expected that the serial

correlation in this data would have a tendency to enlarge the detection limits over the

theoretical limits shown here.

3.4  Treating Autocorrelation in PCA Residuals

As shown in the previous examples, PCA can effectively remove most, but not all, of

the autocorrelation in the model residuals.  This is a direct result of the approximations

made when using PCA, i.e., that the process is linear and can be reduced to some number

of states that is less than the number of measured variables.  In reality, all processes are

infinite dimensional.  However, their dynamics are typically dominated by a few states

which persist in time.  Minor states tend to have more transitory effects on the outputs, but
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these states do cause some "leftover" autocorrelation in the PCA residuals.  
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Figure 3.7.  Detection Limits for Changes in Mean From SF-11 Data Using 4, 7 and 10
Principal Component Models from Autoscaled Data.
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Figure 3.8.  Detection Limits for Changes in Variance From SF-11 Data Using 4, 7 and 10
Principal Component Models from Autoscaled Data.
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It is beyond the scope of this work to thoroughly treat all the possible ways for

dealing with the remaining autocorrelation, but there are several methods that will be

discussed briefly here.  A brute force approach, which works well when there is an

abundance of data, (such as in the LFCM examples given here), is to estimate the residual

limits using subgroups of the data set used to calibrate the PCA model.  In this method, the

data is divided into subgroups of sequential samples with each subgroup containing as

many samples as the number of samples in the "window" used for monitoring.  The mean

and variance of these subgroups is then calculated, and the distribution of the calculated

mean and variance is determined.  Limits are then chosen based on the confidence limit

specified, e.g. if 99% limits were desired, the limits would be set so that only 1% of the

subgroups had a calculated mean and variance outside of the limits.  The major

disadvantage of this approach is that it is entirely empirical.  It makes no assumptions about

the actual distribution of the residuals, but it does assume that the residuals used for

calibration are typical and that the process will continue to produce similar data.  Also, one

would expect that, given enough data, the mean and variance limits calculated this way

would approach the theoretical limits for the actual autocorrelated data.  

In the example case, the number of totally separate subgroups of 20 samples for this

data set is 25.  Many of the data sets that have been used in this research have many

thousands of samples available and thus would have many hundreds of independent

subgroups available for calculating limits.

Another way of removing residual autocorrelation is to decrease the sample rate.  It is

easy to see how if the sample rate were increased enough, eventually all the residuals from

the process would become autocorrelated.  This is because variables in the process cannot

change instantaneously for physical reasons.  Going the other way, if the sample rate is

decreased a sufficient amount, the residuals will become random; the effect of the minor

states noted above dies out in a sufficiently long period of time.
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Finally, there are more explicit methods of treating the residual correlation.

These methods, such as those demonstrated by Harris (1990), start by fitting an

auto-recursive model to the data which quantifies the degree of autocorrelation.  These

models are then used to set the limits on the mean and variance of sample subgroups.  It

would be expected that the limits calculated in this way would be similar to the limits

calculated in the "brute force" empirical approach described above.

3.5  Robust PCA for Multiple Failures

In the preceding sections, a theoretical basis for using PCA with dynamic systems

has been developed.  This is an important step towards the development of PCA for

process monitoring.  However, other problems remain, including problems with the

robustness of the monitoring method.  A problem of particular interest concerns the

continued use of the PCA model after a sensor has been identified as bad.  It has been

shown in the previous sections and in Wise and Ricker (1989b) that the method can

identify a bad sensor, but can the PCA model still be used after that?  If the data from the

sensor continues to be included in the PCA monitoring it has the tendency to “mask” other

events.  For instance, because the Q residual is already large, a change in another sensor

that would normally lead to a large residual tends to get “covered up” and may not be

noticed.

It seems logical that there should be an optimal way of either replacing “bad” data or

modifying the existing PCA model so that changes in other variables can be observed.  One

would also hope that it would be possible to do this in such a manner so that the same

overall statistics that were developed around the PCA model could be used without

modification.  The solution to the problem of replacing data from single or multiple sensors

follows.

Assume for the moment that the PCA model of the process of interest has been

calculated, and that the matrix used for calculating the residuals has been obtained:
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I - PkPkT = Rm (3.19)

The Q residual for any sample x (a row vector) can then be calculated as:

Q = xRmxT (3.20)

Suppose now that one or more sensors have failed and have been detected, using

either the methods developed here or some other similar method.  Further, suppose that it is

convenient to partition x (possibly by rearranging the columns of x) into a group of “bad”

sensors xb, and a group of good sensors xg.  Thus:

x = [xb xg] (3.21)

Furthermore, it is now possible to partition R into parts that act on each of the groups of

good and bad sensors individually:

Rm = R11 R12

R21 R22 (3.22)

The Q residual is now calculated as:

Q = xb xg  R11 R12

R21 R22
 xb

T

xg
T

(3.23)

By multiplying this through, and using the fact that R21 = R12T, the following

expression for Q is obtained:

Q = xbR11xbT + xgR21xbT + xbR21TxgT + xgR22xgT (3.24)

It would seem logical at this point to find values for the bad variables xb which minimizes

Q.  This is equivalent to finding the values of the bad variables which are most
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consistent with the PCA model.  Note that in equation (3.24) the last term is a

function of xg and R22 only, and is therefore fixed.  The problem of minimizing Q

then becomes the problem of minimizing the first three terms on the right hand side of

(3.24).  Thus the objective becomes to find:

xb ∀  {xbR11xbT + xgR21xbT + xbR21TxgT} = min (3.25)

Fortunately, this problem can be easily solved by “completing the squares” (see for

instance Åstrom, p 258).  The result is:

xb = -xgR21R11-1 (3.26)

Because R is fixed, the value of xb for any new sample can be calculated from

xb = xgRR (3.27)

where RR is the regression matrix formed from Rm:

RR = -R21R11-1 (3.28)

which can be calculated once and retained.  Calculation of RR should be possible, in

general, because R11 will be positive definite.  Computationally, the biggest problem

occurs when the bad variables are not in a “convenient” location and the matrices R11 and

R21 must be extracted from R.  The process for doing this is shown in Figure 3.9.  Here

variables 2 and 5 are assumed bad.  The figure shows how the parts of the original Rm

matrix map into R11 and R21.
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Figure 3.9.  Obtaining R11 and R21 from Original Rm Matrix.

Once RR has been obtained, it can be mapped into an identity matrix in such a way

that multiplication of new samples by this matrix, the “replacement” matrix Rm, results in

the bad variables being replaced by their values that minimize Q.  The mapping is shown in

Figure 3.10.  The solid black squares in the figure represent “ones”, the white portions

represent “zeros” and shaded portions are occupied by the regression matrix.

R
R

"Replacement" MatrixRegression Matrix

Figure 3.10.  Mapping of Regression Matrix into “Replacement” Matrix.

It is found that when new samples are multiplied by RM the PCA residuals of the

replaced variables are identically zero.  This can be seen by substituting the calculated

values for xb back into equation (3.24).  This also leads to an expression for the minimum

value of Q.
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Qmin = -xgR21R11-1R21TxgT + xgR22xgT (3.29)

The problem that we are faced with now concerns the fact that the resulting Q values

will tend to be artificially low.  In order to remedy this, a “white” noise signal of zero mean

and appropriate variance should be added to the calculated value of the bad variables.

Ideally, we would like the variation in the residual of the bad variables to mimic the normal

behavior.  Therefore, we must determine the proper noise variance required for this.

It has been shown previously in equation (2.17) that the variance of the residual for

any particular variable can be calculated using the PC loadings and corresponding

eigenvectors not retained in the PCA monitoring model.  Furthermore, equation (2.23)

relates the change in a variable to the change in its residual (with all other variables

remaining constant).  Using these two relationships it is easily seen that the variance of the

white noise snj2 to add to a replaced variable is:

snj2 = sj2(Rjj)-2 (3.30)

where Rjj is the jth diagonal element of Rm.  The result of this will be that the residual of a    

replaced bad variable will have zero mean and a variance approximately equal to the

expected variance based on (2.15).  The “normal” statistics generated for this system will

then still hold, i.e., the null hypothesis that the residuals have zero mean and variance

predicted by (2.15) will remain unchanged.  Thus, any new changes in variables can be

detected in the normal fashion, since the null hypothesis will no longer hold in the event of

change.

It may be that for most practical monitoring problems the preceding scheme for

replacing variables, (an approximation itself), is unnecessary.  Using the original calculated

limits may be close enough, particularly in cases where there are many variables relative to

the number of PCs retained in the model.  In this case the loss of the variance due to one
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variable has only a small affect on the total residual.  The variance of other residuals

will be slightly decreased, making the original limits at an effectively higher

confidence level.  In many applications the difference would be insignificant.

The alternative to replacing bad variables in an existing PCA model is to entirely

rebuild the model.  This approach was compared to the method of replacing variables.  The

somewhat surprising result was that the two methods are equivalent.  In the noise free case,

where the data is truly rank deficient, the two methods produce identical results.  The proof

of this is shown shown in Appendix 2.  In the presence of noise, the solutions are

approximately equal, though usually very close provided a sufficient number of samples

are available.  

To demonstrate the equivalence of the replaced variables versus new model

approaches, a numerical example is provided here along with some figures to help the

reader visualize the mathematics involved.  Suppose that PCA is used to model a process

with 3 variables, but analysis shows that the data is essentially one dimensional.  The PCA

model of the process would then be a single vector p which is arbitrarily chosen for this

example to be

p = [0.5579  0.7748  0.2974]T

Now suppose there is a new sample x

x = [0.7  0.6  0.4]

The residual r of this sample on the model will be

r = [0.1564  -0.1550  0.1103]

The process of projecting the sample x onto the model p is shown in Figure 3.11.
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Figure 3.11.  Projection of Sample Onto Model.

Now suppose that we have reason to believe that the sensor that which is represented

by variable 1 has drifted.  We can now use the method outlined previously to estimate the

actual value of variable 1 using the original model and the information from variables 2 and

3.  Upon doing this we obtain a new estimate of the sample x, xc

xc = [0.4729  0.6  0.4]

Note how the values of variables 2 and 3 have remained unchanged, however the value of

variable 1 has been replaced.  The residuals of this sample, rc can now be calculated using

the original model.

rc = [0.0000  -0.0568  0.1479]

Note how the residual on the first variable is zero, as expected.  The projection of this

"corrected" sample is shown in Figure 3.12.
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Figure 3.12.  Projection of Corrected Sample xc onto Model p.

Now, imagine that instead of correcting samples for the failed sensor that a new

model using only variables 2 and 3 has been developed.  This new model is simply equal to

the old model with variable 1 projected out of it.  This is equivalent to projecting the model

onto the plane formed by variables 2 and 3, then renormalizing it to unit length.  When this

is done the corrected model pc is obtained

pc = [0  0.9336  0.3583]T

When the residuals of the sample x with variable 1 set to zero, xr are calculated, it is found

that the residuals are identical to those given above for rc.  The new model and residuals are

added to Figure 3.12 and are shown in Figure 3.13.  (Note that the projection does not

appear to be orthogonal to the model due to a difference in scaling of the axes.)

3.6  Conclusions Concerning PCA Monitoring

In this chapter it has been shown when it is appropriate to use PCA to detect  faults

and upsets in dynamic processes.  A particular advantage of the PCA approach (relative,

e.g., to the Kalman Filter) is that it provides a convenient way to estimate the C matrix in a
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standard discrete-time, LTI, state-space model (see for instance Ricker, 1990).  Also,

a complete dynamic model of the process is not required.
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Figure 3.13.  Projection of Corrected Sample xc onto Model p Shown with Projection of
Reduced Sample xr onto New Model pc.

Proper application of PCA results in residuals that are non-autocorrelated.  This

greatly simplifies the statistics in fault-detection applications.  Standard F- and t-tests can be

used to monitor the residuals for changes in variance (arising from added sensor noise) and

mean (arising from sensor bias or process changes), respectively.  Other statistical tests,

such as the maximum likelihood ratio used by Willsky (1976), could also be used

(although these are not limited to processes with redundant measurements).  In practice,

while the sample autocorrelation is generally substantially reduced, some autocorrelation

may remain. However, this can be treated by any of the approaches outlined above.  It has

also been shown that detection limits derived for the (scaled) PCA residuals can be used to

calculate detection limits in terms of the measurement units of the original variables.

A point which should be emphasized is that MSPC is most effective when the process

has significantly more measurements than imediately observable states.  One could argue

that all real systems have an infinite number of states and, therefore, could never have more

measurements than states.  There are many systems, however, in which a small number of
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states dominate the dynamic response.  The remaining states are associated with

transients that decay very quickly relative to the sampling period.  For a given

process, either an increase in the number of measurements or an increase in the sampling

period will often be enough to make MSPC applicable. It is the contention here, therefore,

that although MSPC cannot be used in all cases, the number of problems it can address is

significant and is increasing as modern instrumentation systems become more common.

It should be pointed out that process faults which shift the output measurements

within the subspace spanned by PCA model will not be detected by monitoring of the PCA

residuals, though there would be some hope of detecting this type of error through

observation of the PCA scores.  Thus, there will be some errors to which the PCA method

will be quite insensitive.  This is discussed further in Ricker (1990) and Ricker and

Douglas (1990).

An alternative method to completely rebuilding the PCA process model following the

failure of a process sensor has also been demonstrated.  There are several advantages to

using the replacement method, including: the replacement method provides an estimate of

the output of the failed sensor, computation time is reduced over rebuilding the model, and

plant data displays do not have to be reset to account for changes in the model since the

model remains the same.  While the resulting confidence limits for error detection will be

approximate when using the replaced variable, they will generally be quite close,

particularly in applications with many variables but low intrinsic dimensionality of the data.



4.0               Process        Monitoring        with        P L S

In chapter 2 (equations 2.55 to 2.59) it was proposed that PCA-like residuals could

be generated with PLS.  This approach was also demonstrated previously in Wise and

Ricker (1989b).  This chapter provides a basis for the PLS monitoring approach, gives

some examples of its use and compares the effectiveness of the PLS monitoring method to

PCA monitoring using both synthetic and LFCM data.  The chapter closes with the solution

to the "bad variable" problem for PLS monitoring that was solved for analogous PCA

problem in the previous chapter.

4.1  A Basis for PLS Monitoring

In this section it will be shown that PLS monitoring is a logical extension of the PCA

monitoring developed in the previous chapter.  The argument proceeds as follows:  using

the results of Chapter 3 it is shown that a PCA model can be converted to another form that

has detection power identical to the original model.  It is shown that this transformed model

has the form of a collection of regression models, arranged in a manner similar to the

collection of PLS models described in Chapter 2.  A collection of PLS models, therefore, is

simply an optimization of these regression models to improve their predictive ability.

Furthermore, the PLS models make no assumptions concerning the intrinsic dimensionality

of the output variable space.

Suppose that we have a discrete LTI process with noise and with fewer states than

measurements in the state-space form as defined by equations (3.1) and (3.2).

Furthermore, suppose that an accurate PCA model P has been determined for the system,

i.e., P spans the same space as C from the "true" state-space model of the process.  The

PCA residuals for a new sample y(k) are given by

r(k) = (I - PPT)y(k) (4.1)



8

5

8

5

Using the notation of Chapter 3, with (I - PPT) = R and with R partitioned as

in equation (3.23), it is possible to write the residual on the first variable r1(k) as

r1(k) = R11C1x(k) + R12C2x(k) + R11e1(k) + R12e2(k) (4.2)

where C1 corresponds to the first row of the state-space C matrix and C2 is equal to the

remaining rows 2 to m.  It is known from the results of Chapter 3 that if the PCA model is

accurate, the first two terms on the right hand side of equation (4.2) sum to zero, i.e. the

states make no contribution to the residuals.  Thus

r1(k) = R11e1(k) + R12e2(k) (4.3)

Suppose now that the PCA model is transformed so that the residuals on the

transformed model rt are defined as

rt(k) = y(k) - y
^

(k) (4.4)

where each of the y
^
 i is estimated based on the variable replacement method in chapter 3,

e.g., for the first variable in the system

y
^
 1(k) = -y2R12R11-1 (4.5)

The first transformed model residual rt1(k) can now be written in terms of the state-space

model parameters as

rt1(k) = C1x(k) + e1(k) + C2x(k)R21R11-1 + e2(k)R21R11-1 (4.6)

Note the correspondence between equation (4.6) and equation (4.2) above.  From this it is

easily seen that the residual r1(k) is different from rt1(k) by a factor of R11-1.  Furthermore,

based on equation (2.21) it can be seen that the transformed model will have fault
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detection "power" identical to the original model.  The normal residuals on the

transformed model are larger by a factor of R11-1, but when noise or bias is added

the residuals on the new model also get larger by the same factor of  R11-1.  In other

words, the ratio of the expected size of the residuals to the size when a fault has occurred is

the same for both the original and the transformed models.  Furthermore, when the model

is transformed in this manner, if a single variable changes, its residual changes by the same

amount.  The entire PCA model for calculating residuals R can be transformed to Rt as

follows:

Rt = R(diag(R))-1 (4.7)

where diag(R) is the matrix containing the diagonal elements of R.  

It is clear that the transformed model Rt has the form of a collection of regression

models.  Now, because of the "normalization" of the residuals, the predictive ability of Rt

can be compared directly to a collection of PLS models Rpls as proposed in equations

(2.55) to (2.59).  The system used in Chapter 3, (Tables 3.1 to 3.3), will be used as an

example of how the predictive ability of the models compare.  For the test, data was

generated with the example system exactly as described in section 3.2.1, except that the

noise level was varied from 0 to 1.0 times the noise level specified previously in increments

of 0.1.  In each case 1000 samples were generated and PCA and PLS models, Rt and Rpls,

were formed.  In each case the PCA model retained 5 PCs.  The number of latent variables

in each of the PLS models was optimized based on prediction error.  This was determined

from a cross validation where the calibration data set was randomly split into calibration

and test sets of 500 samples 5 times.  The predictive ability of the models was then tested

on a new data set with the same noise level as the calibration set.  Note that the only

difference in the each of the calibration and test data sets was the noise level multiplication

factor.  Identical input and noise sequences were used.
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The results of a subset of the prediction error tests are shown in Figure 4.1.

The results are shown in terms of the percentage decrease in total sum of squares

prediction error for the PLS model as compared to the PCA model, e.g., for variable 7 and

a noise level of 0.9 times the base noise level, the PLS model sum of squared error was

almost 60% less than for the PCA model.  Note how the difference in predictive ability of

the models increases as the noise level is increased.  It is also evident that there is a larger

difference for some variables than for others.
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Figure 4.1.  Percent Improvement in Sum of Squared Prediction Error for PLS Models
Over PCA Models.

The results of this experiment show why PLS based residuals might be superior to

those based on PCA.  With the PCA model transformed in this manner, the change in a

residual given a change in a variable due to error is identical for both the PCA and PLS

models.  However, the PLS model residuals under normal conditions are substantially
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smaller than the PCA residuals.  Therefore, for the PLS model the change due to

error is relatively larger, and should be more easily detected as unusual.

Comparison of the models Rt and Rpls themselves showed some interesting trends.

When the noise level is zero the models are identical, as might be expected.  As the noise

level is increased, Rt changes very little.  This is consistent with experience from the

previous chapter where it was shown that it is possible to identify an accurate PCA model

even when the noise level is quite high.  Rpls, on the other hand, changes a great deal as

the noise becomes very high.  For the optimum predictive ability, the model requires fewer

latent variables, as would be expected.  In general, the coefficients of the model tend to get

smaller, though for some variables they may get larger.  This trend is indicative of the shift

towards fewer latent variables, which tends to spread the predictive ability of the model

over more variables rather than concentrating it on a few.

While it can be expected that the PLS model Rpls will be more sensitive to changes in

the process data, it cannot be expected that the residuals will behave as in the PCA case.  In

general, PLS models do not produce zero-mean residuals.  Furthermore, to the extent that

Rpls lies outside of the subspace spanned by R, it can be expected that some state

information will be mapped into the residuals.  Therefore, because the states are usually

autocorrelated, the PLS residuals will usually contain some autocorrelation also.

Furthermore, if the autocorrelation in the states changes (perhaps due to a change in input

behavior or a disturbance), then the autocorrelation of the residuals would also be affected.

Any change in the autocorrelation of the residuals would have the affect of making the

control limits invalid.  Thus, any PLS detection scheme based on a particular correlation

structure in the process states would become invalid given a change in the state behavior.

It was pointed out in the preceding chapter that the assumption that any process has a

finite number of states is clearly an approximation, although generally a useful one.  Thus,

it is an approximation to say that the data from any process (where measurements are made
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at different locations) is intrinsically rank deficient.  The PLS monitoring method, on

the other hand, makes no assumptions about the intrinsic rank of the process data

and, therefore, about the order of the process producing it.  Instead, the PLS models are

built up individually and the criteria for the models is the predictive residual error.  Thus

there is no "cutoff" approximation as in the PCA models.  It could be said, however, that in

each PLS model the number of factors used for prediction is an estimate of the number of

process states that are relevant in the prediction of each output.

4.2  Generating and Using PCA-Like Residuals with PLS

The PLS residuals can be used in the same fashion as the PCA residuals, but the

calculation of the detection limits must be modified.  Because PLS is a biased regression

method, there is no reason to expect that the residuals will be mean zero and normally

distributed, even when the process consists of deterministic variation and Gaussian noise

(see, for example, Geladi 1986 or Hoskuldsson 1988).  Thus, in this work the limits on

the mean and variance of the residuals will be set in the same manner that limits are set on

PCA residuals with autocorrelation as described in section 3.4.  

Statistical limits for sum of squared residuals, Q, based on the PLS models can be

calculated in a similar fashion to the Q limit for PCA models.  In this case, however, the

observed variance of the residuals for all of the variables is substituted for the eigenvalues

in equations (2.12) to (2.14).  This substitution becomes obvious when one realizes that

the eigenvalues of a covariance matrix are equal to the variance in each of the directions of

the eigenvalues.  When a PCA model is used, the original degrees of freedom of the

problem is reduced: the residuals can only go in the directions of the unused eigenvectors

and the degrees of freedom is reduced from the original number of variables by the order of

the PCA model used.  In the PLS problem, however, there is no loss of degrees of

freedom.  The residuals are free to be in any direction in the original vector space.  Thus the

total PLS Q residual is simply the sum of n independent squared variables, and the limits as
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obtained by Jensen and Solomon (1972) can be used.  It would be expected that the

deviation of the residuals from normal could degrade the accuracy of the calculated Q

limits.  However, Jensen and Solomon note that the behavior of Q approximately normal

even when the distribution of the underlying variables (in this case the residuals) vary

significantly from normal.  This is a result of Q being the sum of many variables.

4.3  Comparison of PCA and PLS Monitoring

In the following sections PCA and PLS monitoring are compared using both

synthetic and actual process data.  The examples given here are representative of the results

observed over many similar tests.  For the synthetic example, the process given in section

3.2.1 will be used.  Data from the West Valley SF-11 LFCM test will be used for the

second example.  

4.3.1  Examples with Synthetic Data

In this example the process with 10 variables but a true rank of 5 used in section

3.2.1 will be considered.  The same output data used to calibrate the PCA model is used to

generate a matrix of PLS models as noted in Chapter 2.  The number of latent variables in

each model of the matrix was determined through cross validation.  The 1000 sample data

set was split randomly into two 500 sample data sets five times for each variable.  One of

the 500 point segments was used to generate a PLS model while the other segment was

used as the test set.  The number of latent variables at the minimum PRESS for the sum of

the 5 trials was chosen for each variable.  The (10 by 10) matrix used for calculating the

residuals of the PLS models, I - Mp, is given in Table 4.1, along with the number of latent

variables retained in each of the models.

The effectiveness of the PLS models for removing autocorrelation from the system

output was tested by checking the autocorrelation of the calibration set residuals, as shown

in Figure 4.2.  The ACF of the outputs is shown as the solid lines; the ACF of the PLS

model residuals is shown as the dashed lines.  Note that while there is less autocorrelation
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in the residuals than in the outputs themselves, there is still a significant amount.

This is more apparent in Figure 4.3, which shows the ACF of the outputs and

residuals from the 1000 sample test data set generated from a PRBS which used to test the

PCA model in section 3.2.1.  Unlike the PCA model residuals in Figure 3.1, the PLS

residuals are correlated in time.  A test was also performed to see if the a PLS model

designed specifically with the PRBS generated data set would successfully remove the

autocorrelation of the set.  The results of this test are shown in Figure 4.4, where it is

apparent that the residuals are much less autocorrelated than in Figure 4.2.  It is apparent

from these tests that, because of the mapping of some state information into the residuals,

PLS models are more effective on data sets with structure similar to the calibration data.

Table 4.1.  Matrix for Calculating Residuals of PLS Models with Number of Latent
Variables in each Model in Square Brackets.

    Columns        1       through        5

[2] [4] [2] [3] [5]
    1.0000   -0.0673    0.0353   -0.2572   -0.0041
   -0.0711    1.0000    0.1004   -0.1207    0.1587
    0.0300    0.1113    1.0000    0.0803   -0.3397
   -0.2559   -0.1180    0.0978    1.0000   -0.1968
   -0.0067    0.1570   -0.3556   -0.1978    1.0000
   -0.0122   -0.0935   -0.1214    0.3445    0.0944
   -0.0654    0.1245    0.1002   -0.0151   -0.0864
   -0.1399   -0.2474    0.0761   -0.0470    0.0065
    0.0552   -0.2468   -0.1041   -0.1578   -0.1871
   -0.3800    0.0001   -0.1479   -0.0372   -0.0250

    Columns        6       through        10

[2] [3] [3] [2] [2]
   -0.0272   -0.0843   -0.1319    0.0558   -0.4007
   -0.0961    0.1636   -0.2374   -0.2495   -0.0007
   -0.1191    0.1054    0.0518   -0.0876   -0.1379
    0.3595   -0.0325   -0.0449   -0.1569   -0.0382
    0.0774   -0.1063    0.0049   -0.1863   -0.0272
    1.0000   -0.1639   -0.2674   -0.0162   -0.0584
   -0.1399    1.0000   -0.1115   -0.0272    0.0441
   -0.3047   -0.1367    1.0000   -0.2725   -0.0483
   -0.0075   -0.0280   -0.2561    1.0000    0.1899
   -0.0564    0.0584   -0.0441    0.1793    1.0000
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Figure 4.2.  Autocorrelation Function of Process Outputs and PLS Residuals from Data Set
with White Noise Input.
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Figure 4.3.  Autocorrelation Function of Process Outputs and PLS Residuals from Data Set
with PRBS Input.
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Figure 4.4.  Autocorrelation Function of Process Outputs and PLS Residuals Based on
PRBS Data from Data Set with PRBS Input.

The detection limits for the PLS models were calculated based on the observed

residuals in the calibration data set.  As with the PCA limits, the PLS limits were calculated

assuming a window of 20 samples would be used.  The limits were chosen8 such that 99%

of the 20 sample groups selected from the calibration data set would have mean and

standard deviation within the limits.  The resulting detection limits are shown in Figure 4.5

below as the dashed lines, and are compared with the corresponding limits for the PCA

model shown as solid lines.  Note that in all cases the PLS model detection limits are as

good as or better than the PCA model limits.  The largest differences are on variables 3 and

7, the variables with the worst detection limits in the PCA model.

In practice, with both PCA and PLS models, when a sensor fails it often causes other

variables besides itself to go outside the calculated confidence limits.  This is demonstrated

                                                
8As a test, the same procedure for calculating detection limits for the PLS models was used to

calculate detection limits for the PCA model.  These limits were found to agree very well with the PCA
model limits calculated directly from theory.
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in Figure 4.6, which shows the limits for a PCA residual mean change (to detect a

bias error) and the observed PCA residual means.  In this case the bias was added to

variable 2, but both variables 2 and 7 have gone outside the defined limits.  Variable 7 is

actually further outside the limit in an absolute sense.  The biased variable can be detected

by determining the ratio of the observed residual mean to the limits, as shown in Figure

4.7.  Here it is clear that variable 2 has the larger relative bias and is therefore correctly

identified as the biased variable.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Detection Limits for Changes in Noise Mean (+) and Std. Dev. (o)

Variable (Sensor) Number

D
et

ec
tio

n 
L

im
it

Figure 4.5.  Detection Limits for Changes in Measurement Noise Mean and Standard
Deviation for PCA (solid lines) and PLS Models (dashed lines).

The ability of the PCA and PLS models to accurately identify sensor failures

(measurement bias and additional measurement noise) was tested through simulation.  Two

new 1000 sample data sets were generated using the model from section 3.2.1.  In the first

case the model was driven by white noise (as in the calibration set) and in the second case

the model was driven by a PRBS, which has considerably more power at low frequencies.

The data sets were broken into 50 segments of 20 points each   Noise or bias was then

added to each variable in the segment in turn, and the residuals were calculated and tested

for significance.  The "failed sensors" were identified based on the ratio of the residuals



9

5

9

5

mean or standard deviation to the appropriate limits, as specified above9.
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Figure 4.6.  Scaled Mean of PCA Residuals and Bias Error Detection Limits Showing
Apparent Bias on Variables 2 and 7.
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Figure 4.7.  Ratio of Mean of PCA Residuals to Bias Error Detection Limits Showing
Largest Bias on Variable 2.

                                                
9The results of the T2 test in these simulations are given in Appendix 3.  In general, the T2 test did

not perform as well at the t- and F-tests used here.
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The results of the error detection simulation are shown in Table 4.2 for bias

error detection and Table 4.3 for noise error detection.  In each case the table is

divided into two sections corresponding to the case of white noise input to the model or the

PRBS sequence which is autocorrelated.  The results for the PCA model are the four

columns on the left while the PLS model results are the four columns on the right.  Each of

the four columns corresponds to a different level of added bias or noise.  The basis for the

bias and noise levels is the scaled outputs, i.e., a bias of 0.5 indicates that a bias of 0.5

units was added to the scaled variable. The original scaling, which resulted in a mean zero

unit variance calibration set, was used in the test.  A noise error of 1.0 corresponds to

adding white noise of unit standard deviation to the scaled outputs.  The row labeled

"Correct" indicates the number of times the method correctly identified the proper variable

has having added bias or noise.  "No Response" indicates the number of times there were

no variables over the limits.  "Wrong" indicates the number of times an out of bounds

variables was detected but the wrong variable was indicated as faulty.  

Table 4.2.  Error Detection Simulation Results for Bias Errors.

Model Input White Noise

                   PCA Model                                     PLS Model                 
Bias Size                              0.5                1.0                  1.5                 2.0                0.5                  1.0                 1.5                  2.0    
Correct Response 141   423   485   499   229   485   499   500
No Response 286    29     1     0   187     4     0     0
Wrong Response  73    48    14     1    84    11     1     0
WR + NR 359    77    15     1   271    15     1     0

Model Input Correlated PRBS

                   PCA Model                                     PLS Model                 
Bias Size                              0.5                1.0                  1.5                 2.0                0.5                  1.0                 1.5                  2.0    
Correct Response 153   438   492   500   186   412   473   492
No Response 298    24     1     0    89     2     0     0
Wrong Response  49    38     7     0   225    86    27     8
WR + NR 347    62     8     0   314    88    27     8

There are several trends in the simulation results which should be noted.  In general,

the PLS model has considerably more correct responses than the PCA model, particularly
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in the case of white noise input to the process.  Furthermore, even when the PCA

model has more "no response" indications than the PLS model, it often has more

"wrong responses."  This can be taken as a indication that it is not just that the PCA limits

are too large.  If this were the only difference, it would be expected that the number of

wrong PCA responses would be smaller than for PLS models when the number of no

responses is larger.  

Table 4.3.  Error Detection Simulation Results for Noise Errors.

Model Input White Noise

                   PCA Model                                     PLS Model                 
Noise Std. Dev.                   1.0                2.0                  3.0                 4.0                1.0                  2.0                 3.0                  4.0    
Correct Response 189   482   499   500   340   500   500   500
No Response 277    11     0     0   146     0     0     0
Wrong Response  34     7     1     0    14     0     0     0
WR + NR 311    18     1     0   160     0     0     0

Model Input Correlated PRBS

                   PCA Model                                     PLS Model                 
Noise Std. Dev.                   1.0                2.0                  3.0                 4.0                1.0                  2.0                 3.0                  4.0    
Correct Response 204   485   498   500   348   499   500   500
No Response 257     7     1     0    97     0     0     0
Wrong Response  39     8     1     0    55     1     0     0
WR + NR 296    15     2     0   152     1     0     0

In Table 4.2 it is also apparent that the autocorrelation in the inputs has a large

negative effect on the PLS model, but little effect on the PCA model.  It is not surprising

that there is little effect on the PCA model because the residuals are known to be

uncorrelated regardless of the process input.  The PLS residuals, on the other hand, are

known to autocorrelated when the autocorrelated input is used, as shown in Figure 4.1.  It

is also not surprising that this autocorrelation in the PLS residuals affects the ability to

properly detect bias error more than it affects the ability to detect noise errors.

Autocorrelation has a greater effect on attempts to measure a change in the mean than on

attempts to detect additional noise.

The number of false alarms (indications that the mean or variance had gone over the
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designated limit when no bias or noise had been added) was also considered in these

tests, though it is not included in Tables 4.2 and 4.3.  When the input signal was

white noise, the number of false alarms was as expected for both PCA and PLS models,

i.e., each variable alarmed approximately 1% of the time.  When the PRBS sequence was

used, the PCA model false alarm rate stayed approximately constant.  The PLS model false

alarm rate, however, changed substantially, as might be expected.  Increased

autocorrelation in the residuals caused the bias test false alarm rate to go up to ~10%.  

4.3.2  Examples with LFCM Data

In this section PCA and PLS monitoring techniques are tested using West Valley

LFCM data from run SF-11.  For these examples a 1500 sample segment of the run was

selected.  After some editing of the data set to replace outliers, the first 750 samples were

used for calibration and the last 750 samples were used for the test set.  A matrix of tests

were performed in order to cover the effects of model order and noise or bias level.  PCA

generated from both mean centering and autoscaling were tested, the PLS models were all

from autoscaled data.  The order of the PCA models was varied from 1 to 10 PCs retained.

PLS models matrices were formed where the number of latent variables in each of the

individual models was fixed at the same value from 1 to 10.  In addition, several PLS

models were formed using different numbers of latent variables for each model, where the

criteria for the number of latent variables was based on prediction error.  

Because the models did not, in general, produce non-correlated residuals, the model

limits were set based on the observed 99% limits of the calibration set.  All of the models

were tested for their ability to detect both biases and added noise in the test data set and for

the number of false alarms produced.  The number of "no response" indications (no

variables detect as "bad"), "correct response" indications ("bad" variable correctly

identified) and "incorrect response" indications (variables identified as bad but incorrectly

specified) were recorded.
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A major trend in the simulations is that as model order is increased, its

sensitivity goes up but its specificity goes down.  This is indicated in Figures 4.8 to

4.10, where the number of correct model responses to a bias error is plotted for each of the

sets of autoscaled PCA models, mean centered PCA models and PLS models.  Bias errors

equal to 0.5 to 2.0 standard deviations of the calibration data set were tested.  Note that the

bias errors as a fraction of the detection limits are different for each variable, so it would

not be expected that all variables would have a similar number of correct detections.  The

total possible number of correct responses is 740 (20 variables times 37 independent data

sets).  
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Figure 4.8.  Number of Correct Responses to Bias Test for Autoscaled PCA Model.

In each of the figures it is apparent that increasing the model order has the effect of

increasing the number of correct responses to small biases while decreasing the number of

correct responses to large biases.  The trend towards decreased specificity with higher

order is greatest for the mean centered PCA model.  This is expected because the variables

with the largest variance in the mean centered model will tend to have very large loadings.

Residuals of variables with very large loadings will tend to be more heavily influenced by

other variables than by the variable itself, i.e. the diagonal elements in the I - PPT matrix

will get very small for variables with high loadings thus decreasing sensitivity to changes in
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Figure 4.9.  Number of Correct Responses to Bias Test for Mean Centered Model.
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Figure 4.10.  Number of Correct Responses to Bias Test for PLS Model.

The number of "no response" indications for the autoscaled PCA model, mean

centered PCA model and PLS model are shown in Figures 4.11 to 4.13, respectively.

(Note that the responses are shown as a function of model order rather than bias amount as

in the previous figures.)  It is apparent in all three of these figures that there are very few

"no response" indications to large errors, as would be expected.  It is also evident that, for

the PCA models, the total number of no responses goes through a minimum for an

intermediate model order.  This is expected because as the model order increases,
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Figure 4.11.  Number of No Indications to Bias Test for Autoscaled PCA Model.

The fact that the number of no indications goes through multiple minima is also

expected.  The largest effect of an additional PC may be to increase the sensitivity of the

model for a particular variable which is not loaded strongly into the model, or it may

decrease the sensitivity of the model to a variable which is already strongly loaded.

Eventually, of course, the sensitivity of the model to changes in all variables will decline as

more PCs are added.  This is not true for the PLS models, as indicated by Figure 4.13.

There is no reason to expect a large increase in the number of "no response" indications.

Some small increases should occur, however, due to the effect that added latent variables

have on the prediction error.  As the prediction error for a variable increases, the sensitivity

of the model to changes in that variable decreases.
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Figure 4.12.  Number of No Indications to Bias Test for Mean Centered PCA Model.
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Figure 4.13.  Number of No Indications to Bias Test for PLS Model.

The number of incorrect responses of the PCA and PLS models are shown in Figures

4.14 to 4.16.  As expected, the number of incorrect responses tends to increase in all

models as the model order increases.  Note that there is little change in the number of

incorrect responses to small errors but the number of incorrect responses to large errors

increases substantially as the model order increases.
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Figure 4.14.  Number of Incorrect Responses to Bias Test for Autoscaled PCA Model.

The number of false alarms remaining approximately constant for the tests, at about

1% for each variable.  However, the false alarm rate tended to increase with increase in

model order.  The apparent reason for this is that, as the model order is increased, the

model is trying to approximate the true process to progressively smaller tolerances.

Therefore, slight differences in the test data relative to the calibration data result in more

false alarms.

The real advantage of PLS monitoring over PCA lies in the fact that models of "mixed

order" can be constructed, i.e. models that have different numbers of latent variables for the

prediction of each variable.  The predictive ability of the model can then be optimized for

each variable.  Experiments have shown that there are some practical difficulties with this

approach.  The major one is that, for some cases, as the prediction errors of the variables

decrease and the sensitivity of the model increases, its specificity goes down.  Small errors

become more easily detected, but the assignment of the errors to the correct variable

becomes hampered.
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Figure 4.15.  Number of Incorrect Responses to Bias Test for Mean Centered PCA Model.
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Figure 4.16.  Number of Incorrect Responses to Bias Test for PLS Model.

The cause of the trade off between sensitivity and specificity becomes apparent when

one considers how the coefficients in PLS models change as more latent variables are

added to the model.  PLS models with few latent variables tend to have smaller coefficients

but more variables with significant coefficients, i.e. the prediction is spread out over more

variables.  As latent variables are added to the model the coefficients on the variables that

are the most correlated with the variable to be predicted tend to get larger at the expense of

the coefficients on the remaining variables.  Because of this, low order PLS models are
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more robust to changes in single sensors, and especially to changes in the sensors

which are most correlated with the predicted variable.  Thus, it is found that when

PLS models with many LVs are used in the error detection problem, when a sensor fails it

is not only the "bad" variable that goes out of bounds but also all highly correlated

variables.  Often several variables go over the limits and by similar amounts.  This is

because the correlated variables rely heavily on the bad variable for prediction.  

In the experiments performed here it was found that the collection of PLS models

where each model was optimized for prediction was not a particularly effective monitoring

tool.  While the detection limits of this model are indeed optimum in some sense, the

specificity of the model is not good due to the heavy reliance of some of the models on too

few variables.  By reducing the number of latent variables in the PLS models it was

possible to construct a model with very good sensitivity and selectivity.  In this work this

was done in a rather unsystematic fashion, but this need not be the case.  It would certainly

be possible to use an optimization technique, such as non-linear programming, to solve for

the optimum collection of models for error detection.

As a final comparison here, the best of the PLS and PCA models were compared to

each other for their ability to detect biased variables.  In this case "optimum" was defined as

the model having the highest ratio of correct responses to the sum of the wrong and no

responses.  This is a subjective criteria, and depending upon the application the weights

given to the wrong and no response categories might be different.  The optimum model

from the autoscaled PCA models is the 6 PC model, while for the mean centered data it is

the 1 PC model.  The optimum PLS model of fixed order is the 5 latent variable model.  In

addition, a "near optimum" PLS model of mixed order was also tested.  The results of

these tests are shown in Figures 4.17 to 4.19.
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Figure 4.17.  Number of Correct Responses to Bias Test for "Best" Models.

Figure 4.17 shows that, while all the models have a similar number of correct

responses to large errors, the mixed PLS and 5 LV PLS models are considerably better at

detecting the smaller errors.  In absolute number of correct responses, the mixed PLS

model was better at all bias levels tested.  

Figure 4.18 shows that the mixed PLS model also had by far the fewest number of

incorrect responses.  Here the differences are relatively large between the mixed model and

the others, particularly for small biases.  Finally, Figure 4.19 shows that the mixed model

is not quite as sensitive as the 5 LV model, but more sensitive than either of the PCA

models.
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Figure 4.18.  Number of Incorrect Responses to Bias Test for "Best" Models.
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Figure 4.19.  Number of No Responses to Bias Test for "Best" Models.

The calculated detection limits based on the observed residuals of the calibration set

are shown for all the models in Figures 4.20 (for bias errors) and 4.21 (for noise errors).

As expected, the detection limits are not the same for all variables.  Thermocouples deep
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within the glass melt (variables 1-6 and 11-16) have much smaller limits than than

those in the cold cap (variables 7-9 and 17-19) and plenum regions (variables 10 and

20).  
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Figure 4.20.  Calculated Bias Detection Limits for "Best" Models Based on Observed
Residuals in Calibration Set.

The detection limits for the autoscaled PCA model are clearly better than for the mean-

centered model.  The detection limits for the PLS models are very similar to each other.

For some variables the PLS models have significantly better limits than the autoscaled PCA

model, while for other the limits are similar or slightly worse.  It is known from the

simulations, however, that the PCA model suffers from a lack of specificity.  It would be

expected that, while the PCA model might detect the presence of a small error that the PLS

models would not detect, it is unlikely that the PCA model could properly assign the error

to the correct variable.
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Figure 4.21.  Calculated Noise Detection Limits for "Best" Models Based on Observed
Residuals in Calibration Set.

4.4  Robust PLS for Multiple Failures

In the previous chapter, a method for predicting outputs for known “bad” sensors

was derived.  The idea was to determine the value of the bad output that minimized Q.  The

solution to this problem was easy partly due the symmetry of the PCA matrix for

calculating residuals.  In the case of generating PLS-based residuals, however, the

symmetry does not exist and the problem becomes just slightly more difficult.

Assume that the matrix for calculating the residuals of the collection of PLS models

defined in equation (2.59), Rpls, can be partitioned in a manner similar to the Rm matrix

shown in equation (3.22).  The value of the Q statistic for the PLS models can then be

written:

Qpls = xbR11xbT + xgR21xbT + xbR21TxgT + xgR22xgT (4.8)

Once again, it is possible to solve for the values of xb which minimizes Qpls.  The
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lack of symmetry causes a minor complication, however, the result is

xb = -xg((R21 + R12T)/2)R11-1 (4.9)

It is interesting to note that, while the residuals on the bad variables becomes zero in

the PCA case, it does not in the PLS case.  Instead, the new residuals on the bad variables

are:

rb = -xgRave + xgR21 (4.10)

where

Rave = (R21 + R12T)/2 (4.11)

So to the extent that R21 is not equal to R12T the residuals on the fixed variables will

not be zero.  The overall process residual QPLS can be calculated by substituting the

solution for xb in equation (4.9) into equation (4.8), however, this expression does not

appear to simplify very much, so this exercise will not be repeated here.

4.5  Conclusions Concerning PLS and PCA Monitoring

In this chapter it has been shown that PLS can be used in a manner similar to PCA for

monitoring multivariate processes.  It is interesting to note that, unlike PCA, when PLS is

applied in this manner uncorrelated residuals do not result, even in the ideal case of a linear

process with more outputs than states.  It is clear that to the extent that the collection of PLS

regression vectors lies outside the subspace spanned by I - PPT the resulting model will

produce residuals that are autocorrelated.  This is because state information will be mapped

into the residuals from the PLS models under these circumstances.  In spite of this, the

better prediction error of the PLS models allow for improved error detection under most

circumstances.  However, if the correlation in the model states changes significantly the
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PLS model performance is expected to suffer.

The effect of model order was also investigated.  It was found that higher order

models, while more sensitive, tended to be less accurate in identifying the perturbed

variable.  In the PLS models, this trade off can be optimized for each variable.  This

typically results in models with fewer latent variables than would be expected based on a

prediction error criteria alone.  These mixed order PLS models achieve the best error

detection performance of any of the methods tested.



5.0               Dynamic        Process        Model       Identification        with        CR

This chapter concerns the effects of using continuum regression for identification of

dynamic process models.  There are many questions to be answered concerning this

application of CR.  The most important, of course, is whether it is better than existing

methods.  This chapter will demonstrate that for the case of FIR models CR is clearly more

effective than existing methods.  For ARX models, CR offers real advantages only in a

limited number of situations.  There are, however, other issues to consider and some

potential pitfalls of the method that should be addressed.  Specifically, the following issues

are considered:  What are the biases that the method introduces and how serious are they?

Are there particular process dynamics that are difficult to capture using the CR method?

What are the effects of data set size, noise level and degree of input excitation on the

optimum model location in the CR model space?  All of these questions will be considered

in the sections that follow.

5.1  General Methodology

The questions posed above are attacked from several angles.  The problem is first

broken down into the types of models to be identified.  Linear FIR models are considered

first  in section 5.2, then linear ARX models in section 5.3.  A final section, 5.4, will deal

with non-linear FIR models.

Within the model types a number of issues are considered.  For FIR models, the

problem of the frequency domain effects of PCR is considered from a theoretical

viewpoint.  Because PCR is a limiting case of CR, an understanding of it is useful for

interpreting CR results.  Other questions concerning linear FIR and ARX model

identification are attacked using numerical simulations.  A set of representative process

models is selected, then these models are used to generate calibration data sets of various

sizes with different amounts of noise and levels of input excitation.  Models are then
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identified using the simulated outputs and compared to the original models.  Finally,

the potential for using PLS and PCR for non-linear FIR model identification is

explored with an example employing data from a real process.

5.2  Continuum Regression for FIR Model Identification

The goal of this chapter is to develop an understanding of how the CR method

performs when used for the identification of FIR models and identify and any potential

problems concerning its application.  One concern in particular involves the creation of

"artifacts" in the identified models.  In the following section the behavior of PCR, one

extreme of the CR method, will be considered.  Specifically, the PCA decomposition of the

input block will be explored, and this decomposition will be related to the frequency

domain behavior of the resulting PCR models.  The reason for studying PCR is that, once

the effects of PCR are understood, the effects of the CR method will be much clearer.  The

effects of process noise, input excitation and process dynamics on the FIR models obtained

by CR will then be considered in later sections.

5.2.1  Eigenvector Decomposition of the ACM

The first step in understanding how PCR works when used for FIR identification is

to review the form of the input matrix that will be decomposed by PCA.  When the data are

arranged for identification of an FIR model, the resulting matrices resemble those shown in

Figure 5.1 below.  Here the first 4 samples are shown for identification of a 5 coefficient

FIR model.  Note how the values of the input u(t) in the X  matrix are repeated along

diagonals.  As pointed out in Box and Jenkins (p. 53), the correlation matrix of this X ,

[X'X/(n - 1)], approaches the Autocorrelation (or Autocovariance depending on the scaling

of the original input signal) Matrix (ACM) as more data are collected.  Each entry in the

Autocorrelation (Autocovariance) Matrix, aij, is equal to the correlation coefficient

(covariance) between u(t+j) and u(t+i).  Note, however, that the correlation between any

u(t+j) and u(t+i) depends only on the difference between i and j.  This can be compared to
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the Autocovariance Function (ACF), which is a vector of the covariance between a

(mean centered) signal u at time t and time t-τ.  Thus:

ACF(τ) = E{u(t)u(t-τ)} (5.1)

where E{ } denotes the expectation operator.  If u is scaled to unit variance, the ACF

becomes the Autocorrelation Function.  Because every value in the ACM depends only

upon the difference of the indices, every entry aij in the ACM can be replaced by ACF(i-j).

This is shown in Figure 5.2, where each value in the ACM is replaced by the

corresponding value in the autocorrelation function (ACF).  Furthermore,

  ------------ X ------------             y
u(5) u(4) u(3) u(2) u(1)       y(6)
u(6) u(5) u(4) u(3) u(2)       y(7)
u(7) u(6) u(5) u(4) u(3)       y(8)
u(8) u(7) u(6) u(5) u(4)       y(9)

: : : : :       :

 

Figure 5.1.  Arrangement of Data for FIR Model Identification.

------------------------ X'X ------------------------
ACF(0) ACF(1) ACF(2) ACF(3) ACF(4)
ACF(-1) ACF(0) ACF(1) ACF(2) ACF(3)
ACF(-2) ACF(-1) ACF(0) ACF(1) ACF(2)
ACF(-3) ACF(-2) ACF(-1) ACF(0) ACF(1)
ACF(-4) ACF(-3) ACF(-2) ACF(-1) ACF(0)

 

Figure 5.2.  Arrangement of Autocorrelation Matrix for FIR Model Identification.

The ACM is special type of matrix known as a Toeplitz matrix, in which values are

repeated along diagonals.  The ACM is also symmetric because ACF(τ) = ACF(-τ).

Furthermore, if the characteristics of the input signal u are known, the expected value of the

ACM can be calculated.  For instance, if u(k) is generated by passing a white noise signal

c(k) through a first order filter

u(k) = α u(k-1) + (1 - α) c(k) (5.2)

then the expected values of the entries in the autocorrelation matrix are
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ACM (i,j) = aij = (α)|i-j| (5.3)

As mentioned above, the PCR method relies on an eigenvector decomposition of the

covariance or correlation matrix, [X'X/(n - 1)], which for FIR models is equal to the

Autocovariance or Autocorrelation Matrix of the input signal.  Typically, this leads to

eigenvectors (PCs) that have coefficients that look like sine and cosine curves.  Such a case

is plotted below in Figure 5.3, which shows the coefficients of the first five eigenvectors of

an ideal ACM (where the entries in the ACM are equal to the expected values for large data

sets).  This ACM was calculated for |i-j| up to ±100 resulting in an ACM matrix that is 101

by 101.  Because of the equality of principal component vectors and eigenvectors of the

corresponding covariance matrix, the plots are identical to plots of the entries in the p

vectors from PCA.  This particular ACM was calculated assuming that the input signal was

generated by passing white noise through a first order filter as in (5.2) where α  = 0.8.

There would be 101 coefficients in the FIR model corresponding to this ACM.

For the continuous (as the sample rate goes to zero) but finite case (where there is a

maximum correlation time to be considered) it can be shown that the eigenvector

coefficients of an ACM resulting from white noise through a first order filter are identically

sine and cosine functions.  In this case the autocorrelation matrix becomes a continuous

function of two variables, which we will call x and y, over a finite domain.  In the discrete

case it is possible to multiply the ACM (a function of two indices) by a vector (a function of

one index) to obtain a vector (also a function of one index).  In an analogous manner it is

possible to multiply the continuous ACM (a function of two variables x and y) by a

function (in one variable, say x) and then integrate (over x) to obtain a function in one

variable (y).  Let us define the continuous ACM over the interval -a to a in both the x and y

directions.  It will be shown that the width of the interval is proportional to the FIR

window width that has been chosen.  To further simply things, assume that the continuous
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ACM can be defined as

ACM(x,y) = e- |x + y| (5.4)

Here e is used because the resulting mathematics are simplified.  It will be shown that this

does not affect the generality of the solution.
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Figure 5.3.  Coefficients in First Five Eigenvectors of Autocorrelation Matrix of White
Noise Process Through First Order Filter.

It is known from numerical experience that the coefficients of the eigenvectors of

ACMs look like sine and cosine functions.  Therefore, it is proposed that a cosine function

is an eigenfunction of the analogous continuous time problem.  Thus, it is proposed that

e- x + y  cos x
n  dx = λ cos

y
n

x = -a

x = a

(5.5)

 

for some choices of n and λ.  In order to see if any values of n and λ can be found to make

(5.5) true, the integral on the left hand side must be evaluated.  In order to remove the
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absolute value function from the exponential it is convenient to break the above

expression apart as follows:

e- x + y  cos x
n  dx = 

e- x + y  cos x
n  dx

-y

a

   for  x+y > 0

e x + y  cos x
n  dx

-a

-y

   for  x+y < 0

x = -a

x = a

(5.6)

The solution to 5.6 is:

e- x + y  cos x
n  dx = 

-e-(x+y) cos x
n

1 + n-2
 + 

e-(x+y) sin x
n

1 + n-2  n x = -y

x = a

e(x+y) cos x
n

1 + n-2
 + 

e(x+y) sin x
n

1 + n-2  n x = -a

x = -y

x = -a

x = a

(5.7)

which reduces further to

e- x+y  cos x
n  dx = e-(π+y) + e-π+y  

- cos a
n

1 + n-2
 + 

sin a
n

1 + n-2  nx = -a

x = a

 + 
2 cos 

-y
n

1 + n-2
(5.8)

For particular values of n the second term on the right hand side of equation (5.8) is

identically zero.  Some algebraic manipulations show that this occurs when

n = 
sin a

n
cos a

n
 = tan a

n
(5.9)

This gives the allowed "periods" of the cosine eigenfunctions.  (The true period would be

equal to 2πn.)  The eigenvalues associated with each period n, λn are given by
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λn = 2
1 + n-2 (5.10)

In a similar manner one can rewrite equation (5.5), with sine replacing cosine, and

obtain a new solution.  The result is that the allowed periods of the sine eigenfunction are

given by

n = -1
tan a

n (5.11)

The associated eigenvalues are as given in equation (5.10).

The results from the continuous case can now be compared to calculated results from

the discrete case.  As an example, let us define an ACM using equation 5.2 with α  = 0.9

and 101 coefficients.  In order to set up the analogous continuous time problem the

integration limits must be specified.  For the problem to be completely analogous the

parameter a must be set so that the values in the continuous function map onto the same

values in the discrete ACM.  The easiest way to assure this is to specify that

ACM(1,m) = αm-1 = e-2a (5.12)

which when rearranged yields

a = 1
2

 log 1
αm-1 (5.13)

For our example this gives a = 5.268.  Equations (5.9) and (5.11) can now be used to

determine the periods of the cosine and sine eigenvectors, respectively.  This is shown

graphically in Figures 5.4 and 5.5.  In Figure 5.4 the intersections of the n = n line with the

tan(a/n) curves give the values of n that are solutions to equation (5.5).  Figure 5.5 shows

the intersections of the n = n line with the -1/tan(a/n) curves giving the values of n which
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solve the sine analog of equation (5.5).  Notice that in both cases, while there are

infinitely many intersections of the curves, there are no more intersections of the

curves to the right of the last intersection shown.  The rightmost intersections in Figures

5.4 and 5.5 correspond to the first (associated with the largest eigenvalue) cosine

eigenfunction and sine eigenfunction, respectively.
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Figure 5.4.  Points where n = Tangent (a/n) Showing the Frequencies of the Cosine
Eigenvectors.

Figures 5.6 and 5.7 demonstrate the agreement between the continuous and discrete

cases.  In Figure 5.6 the coefficients of the first three cosine eigenvectors of the discrete

problem (eigenvectors 1, 3 and 5) are plotted (solid lines) along with the predicted values

based on the continuous problem (+'s).  The coefficients are plotted against the position in

the x-domain.  The coefficients of the the continuous problem were scaled to yield unit

vectors.  In Figure 5.7 the first three sine eigenvectors (numbers 2, 4 and 6) are shown

along with the continuous problem solution.  Note how the agreement is nearly perfect in

both figures.  Small discrepancies can be seen in the higher frequency terms.
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Figure 5.5.  Points where n = -1/Tangent (a/n) Showing the Frequencies of the Sine
Eigenvectors.
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Figure 5.6.  Coefficients of the Cosine Eigenvectors of the Discrete Matrix Shown with
Eigenfunction Solutions to the Continuous Problem.

In addition to checking the frequencies of the eigenfunctions versus the eigenvectors,

it is also possible to check the agreement with the corresponding eigenvalues.  Because the

scaling and size of the ACM affects the magnitude of the eigenvalues, it is not possible to

compare the values directly.  However, it is possible to show that the distribution of both
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sets of eigenvalues is the same.  This is done in Figure 5.8 where the solid line

corresponds to the calculated eigenvalues of the discrete problem.  The stars

correspond to the scaled eigenvalues of the continuous problem.  The eigenvalues of the

continuous problem were scaled so that the first eigenvalues in both distributions are equal.

The agreement between the eigenvalues is quite good.  There are slight discrepancies

between the smaller eigenvalues.
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Figure 5.7.  Coefficients of the Sine Eigenvectors of the Discrete Matrix Shown with
Eigenfunction Solutions to the Continuous Problem.

Numerical simulations show that the agreement between eigenvector decompositions

of ideal discrete ACMs and the continuous analog are very good, even as the matrices

become quite small.  The agreement between cases suffers somewhat more as the

α parameter in the discrete case is decreased.  This happens because for small α  the ACM

loses its "smoothness", i.e., the differences between adjacent entries in the matrix is quite

large.  Decreasing the α  parameter is equivalent to increasing the sample rate of the input

signal.

In practice, when identifying FIR models the input covariance matrix will not be

ideal, i.e., the matrix will not be perfectly Toeplitz due to the finite data record.  However,
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for typical cases where the number of coefficients is >10 and there are several

hundred samples, the agreement between calculated principal components and pure

sines and cosines is very good.  Other ACM forms arrived at through higher order filters

produce similar, though not identical, results.  Certain cases, such as white noise through a

second order under-damped filter, produce eigenvectors that still have periodic behavior,

but are essentially combinations of frequencies and can be rather complex.
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Figure 5.8.  Eigenvalues of the Discrete Case Shown with Scaled Eigenvalues of the
Continuous Case.

5.2.2  Frequency Domain Effects of PCR

Based upon the results of the previous section, it can be seen that, in some sense,

PCR breaks the input signal up into components of differing frequencies.  This has a direct

effect on the models obtained from the technique.  Two identification experiments are used

here to illustrate this effect.  In the first case the true system is first order, while in the

second case the true system is second order under-damped.  Both systems have unit gain at

steady state.  In both identification experiments a Pseudo Random Binary Sequence

(PRBS) input signal was generated by filtering white noise through a second order

Butterworth filter and taking the sign of the result.  The input signal was considered to be 1
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when this result was positive and -1 when it was negative.  The process models and

filter parameters are given in Table 5.1.  The calculated PRBS was used to generate a

calibration set of 500 samples from both processes.  A segment of the PRBS input

generated with these parameters is shown in Figure 5.9, along with the output from the

Case 2 process.  PCR was used to identify FIR models of the (noise free) processes.  In

each case 30 FIR coefficients were used.  The frequency behavior of these models using

different numbers of PCs was then tested.

Table 5.1.  Numerator [A(q-1)] and Denominator [B(q-1)] Polynomial Coefficients.

     Numerator       Denominator   

Case 1 .1426 1  -0.8574

Case 2 0.1129  0.1038 1  -1.5622  0.7788

Filter 0.0015  0.0029  0.0015 1  -1.8890  0.8949
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Figure 5.9.  Example PRBS Input and Case 2 Process Output.

The results of the identification experiment are shown in Figures 5.10 and 5.11

which give the Bode gain magnitudes as a function of input frequency for each of the true

systems and their corresponding FIR models.  The true response of each system is shown
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as the hatched line.  The frequency response of the PCR identified FIR models,

using from 1 to 6 PCs, are also shown.  Note how the 1 PC models accurately

describe the process behavior at low frequency only.  As PCs are added to the regression,

the model matches the actual system response to progressively higher frequencies.  
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Figure 5.10.  Bode Gain Magnitude Plot for First Order Process (Case 1) and PCR
Models.

The "dips" in the gain for the PCR models are a consequence of the sinusoidal nature

of the PCs used to construct the FIR models.  For instance, it has been shown above that

the FIR model identified using just 1 PC has coefficients that are a cosine function of a

particular frequency.  Certain input frequencies, therefore, can be orthogonal to this

frequency and will not be passed by the model.  The gain "dips" occur, in fact, at

frequency intervals of 2π, which would be expected based on the behavior of orthogonal

cosine functions.
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Figure 5.11.  Bode Gain Magnitude for Second Order Process (Case 2) and PCR Models

The point concerning the consequences of the sinusoidal nature of the PCs is an

important one and deserves some further investigation and clarification.  Suppose that the

first PC from the decomposition of the ACM can be represented as a continuous cosine

function of period 4π (frequency = 0.5) over the interval from -π to π.  Here the interval

and period are chosen so that the function will go through one half cycle over the interval.

This is similar to the first PC from a typical ACM decomposition, as demonstrated

previously (compare to Figure 5.3).  For a sinusoidal input the process output y(t) of the 1

PC (continuous) FIR model must then be

y1(t) = c1 cos 0.5 x  cos m (x + t)  dx
-π

π

(5.14)

where m is the frequency of the input signal and c1 is the constant determined from

regressing y onto the scores vector t1.  The solution to this integral is
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y1(t) = 
sin -mt + (0.5 - m) x

2 (0.5 - m)
 + 

sin mt + (0.5 + m) x
2 (0.5 + m) x = -π

x = π

(5.15)

which when evaluated yields

y1(t) =

sin -mt + (0.5 - m) π  + sin mt + (0.5 - m) π
2 (0.5 - m)

   +   
sin mt + (0.5 + m) π  + sin -mt + (0.5 + m) π

2 (0.5 + m) (5.16)

It is easily seen that for values of m that are equal to an integer + 0.5 the value of the

numerator in both terms is identically zero for all t.  Thus it is apparent that frequencies of

1.5, 2.5, 3.5 etc. will not pass through the 1 PC model.

Let us further assume that the second PC can be represented as a sine function of

period 2π (frequency 1) over the same interval (again, compare with Figure 5.3).  The

contribution of the second PC to the model will then be

y2(t) = c2 sin x  cos m (x + t)  dx
-π

π

(5.17)

Using a procedure similar to that shown in equations (5.13) to (5.16) it can be shown that

when m is an integer greater than 1 the value of the integral in (5.17) is zero for all t.  Thus

we expect that the second PC will make no contribution to the 2 PC model at frequencies of

2, 4, 6 etc. and the response at these points will be equal to the 1 PC model response.  It is

also interesting to note that there are no values of m less than 1 for which the integral

vanishes.

 Considering once again Figures 5.10 and 5.11 it can be seen that the behavior shown

is expected based on the mathematical argument given above.  The 1 PC model does not

pass certain frequencies that occur at even intervals.  The 2 PC model passes these
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frequencies but adds nothing to the centers of the intervals of the 1 PC model.

Similar behavior continues as more PCs are added to the model.  Because the

"period" of the first and subsequent PCs can change, given changes in the input signal, the

exact location of the "dips" will also change.  The behavior of the models will be similar in

any case, however.

5.2.3  Effect of Filtering on ACM Decomposition

It was mentioned above that ACMs that are generated by processes other than white

noise through first order filters have more complex decompositions.  However, as Figures

5.10 and 5.11 demonstrate, even in the case where the data record is finite and the input

signal was generated though a higher order filter (or modified to be a PRBS) the results are

quite similar to the ideal ACM case.  

The following example illustrates how different filtering options affect the ACM

decomposition.  An input signal was generated by filtering a 1000 sample white noise

sequence through a first order process as in equation (5.2) with α  = 0.8.  The 30 point

autocorrelation matrix (the matrix which considered time shifts from -30 to +30 units) of

this signal was then formed and an eigenvector decomposition of it computed.  The original

signal was then filtered through a first order process where the value of α  was varied from

0.1 to 0.7.  The eigenvalues of the ACM from the filtered signal are compared with those

of the original signal in Figure 5.12.   Note how the filtering has a larger affect on the small

eigenvalues (associated with higher frequencies) than on the large eigenvalues.  This is

expected because filter is a low-pass type.  Increasing the value of α  lowers the cutoff

frequency and begins to reduce the larger eigenvalues (associated with lower frequencies)

to a greater degree.

Even though the eigenvalues are greatly affected by filtering, the eigenvectors of the

ACM do not change a great deal as shown in Figure 5.13.  The figure shows the

coefficients of the first, sixth and tenth eigenvectors for all of the values of a tested.  Note
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how they remain largely identical throughout the series.
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Figure 5.12.  Eigenvalues of Autocovariance Matrix for Original Signal and Filtered
Signals as Cutoff Frequency is Lowered.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20 25 30

ACM Eigenvectors 1(_), 6(--) and 10(...) for Changing Filter Cutoff

Variable Number

E
ig

en
ve

ct
or

 C
oe

ff
ic

ie
nt

Figure 5.13.  Coefficients of the First, Sixth and Tenth Eigenvectors of the ACM for
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Varying Filter Parameters.

As an aside here, it is interesting to note that low pass filtering of the input and

output data prior to identifying an FIR model is probably not a good idea, particularly if

MLR is the method to be used.  Low pass filtering tends to make the autocovariance matrix

extremely ill-conditioned, and it is this matrix which must be inverted in MLR.  On the

other hand, high pass filtering, to de-trend the data, may still be advantageous in certain

situations.

Numerical results indicate that FIR models identified from PCR will tend to fit first in

the frequency ranges where there was the most power in the input signal.  For instance, if a

band-pass filter is used to generate the input signal, the models identified will be fit first in

the frequency range where the input signal had the most power.  As PCs are added to the

regression, the models will fit in regions further away from the "band".  This is consistent

with the theory of eigenvector decomposition of the ACM developed here.  Frequencies

with the most power are associated with the largest eigenvalues and will be extracted from

the input sequence first, and the resulting models can only be expected to fit the true

process behavior in the range of the frequencies considered in the regression.  Filtering to

isolate frequency ranges of interest before modelling is a common approach, as indicated

by Ljung (1987) and Rivera (1990a and 1990b).

5.2.4  Frequency Domain Effects of CR

If the frequency domain interpretation of PCR developed here is correct, then it

would be expected that the CR techniques would show similar behavior in the frequency

domain, especially for high powers of the singular values (CR techniques on the PCR side

of the continuum).  However, some differences should result because CR produces latent

variables that are rotations of the original eigenvectors.  Therefore, the resulting vectors

would be less orthogonal to particular frequency inputs and would not produce gain "dips"

as severe as those seen in PCR models.  This result is shown graphically in Figure 5.14.



1

30

1

30

Here a collection of Bode gain plots for 1 latent variable models of the Case 1 (Table

5.1) process are shown as a 3-d surface.  The continuum parameter of the models

tested all lie in the range of PCR (infinity) to conventional PLS (1).  Specifically, thus the

powers of the singular values used in the continuum regression were 1 (PLS), 1.41, 2,

2.83, 4, 8 and infinity (PCR).  
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Figure 5.14.  Bode Gain Magnitude for 1 Latent Variable Models of Second Order Under-
damped Process--No Noise.

In Figure 5.14 it can be seen that the 1 latent variable PCR model has strong "dips" in

the gain (as in Figure 5.10), however, these dips tend to be reduced in the models that

allow for more rotation from the original eigenvectors (the models closer to PLS).  As

might be expected, the rotation results in better cancelation of gain "dips" in the lower

frequencies than in the higher frequencies.  Note that the lowest frequency gain dip in the

PCR model is essentially non-existent in the PLS model while the gain dips at higher

frequency change very little.  This type of behavior is expected because the latent variables
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in PLS are biased towards rotation in the direction of other eigenvectors associated

with relatively large eigenvalues and that have a high degree of correlation with the

process output, i.e., directions with a large amount of covariance.  High frequency gain

dips in the PCR model are not cancelled as well in the PLS model because cancelation

requires a vector with a component in the direction of the eigenvector associated with those

high frequencies.  Because the eigenvalues of these high frequency eigenvectors are quite

small, however, the latent vectors do not tend to get rotated towards them, i.e., there is

very little covariance in this direction so the PLS vectors do not tend to rotate this way.

5.2.5  Effect of Identification Conditions on FIR Modelling

Now that it is clear how the PCR method works for FIR model identification, the

investigation into the effect of process parameters on models identified by the CR method

may proceed.  The goal of this section is to develop an understanding of the effects that

process measurement noise level, process dynamics, amount of input excitation and mis-

estimated time delays have on the location of the "best models" in the CR parameter space.

The effects that these factors have on the relative advantage of the CR method over MLR

will also be considered.  

A collection of 7 representative process models is used to test the CR procedure.  The

numerator and denominator polynomials of the models are given in Table 5.2.  These

models are intended to span a variety of dynamic behaviors typical of chemical processes.

The processes are as follows: first order, second order over-damped, first order over

second order over-damped, second order over-damped with right half plane zero, fifth

order over-damped and fifth order under-damped.  The Bode Gain Magnitude plots of the

test processes are shown in Figure 5.15.  The frequency axis on the Bode plots is scaled so

that the Nyquist frequency (twice the sampling frequency) corresponds to 2π on the plot.

Table 5.2.  Numerator and Denominator Polynomial Coefficients for Test Models.
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     Numerator       Denominator   

Model 1 .1426 1  -0.8574

Model 2 0.0256  0.0215 1  -1.5503  0.5974

Model 3 -0.0742  0.1256 1  -1.5353  0.5866

Model 4 0.1707  -0.1330 1  -1.5834  0.6211

Model 5 0.1129  0.1038 1  -1.5622  0.7788

Model 6 numerator 0.0354  -0.0475   0.0222   -0.0041   0.0002

Model 6 denominator 1   -2.9004   3.2427   -1.7335   0.4395   -0.0421

Model 7 numerator 0.1976   -0.2723   0.1345   -0.0285   0.0023

Model 7 denominator 1   -2.7819   3.0946   -1.6267   0.3753   -0.0278
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Figure 5.15.  Bode Gain Magnitude Plots for the Seven Test Processes.

5.2.5.1               Effect        of        Process         Measurement         Noise

The first factor investigated was the effect of process measurement noise.  In this

series of tests the measurement noise level was varied so that the noise standard deviation

was 5% to 100% of the process gain, which was unity.  The FIR window width used in all

of these experiments was 30 sampling periods.  All the processes tested reach 99% of

steady state gain after 30 sample periods.  A PRBS input, developed using the filter in
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Table 6.1, was used to generate 500 input/output samples from all seven processes.

The process measurement  noise levels were adjusted to have a standard deviation of

5, 10, 20, 40 and 100% of the process gain.  Models were tested with a separate PRBS

that was generated using the same filter as the PRBS used for calibration.

Some typical model error (PRESS) surfaces for varying noise levels are shown in

Figures 5.16 and 5.17.  Figure 5.16 shows the PRESS surface for identification of a first

order process (Model 1 from Table 6.2) with 5% noise, while Figure 5.17 shows the

PRESS surface when 40% noise is added.  Note how, at the 5% noise level, the optimum

models are not much better than the MLR models.  At higher noise levels the "valley" is

much deeper relative to the MLR "plain", which has risen.  Note also that the location of

the "valley" shifts to fewer latent variables at the higher noise levels.  This is consistent

with PCR and PLS experience; when more noise is added to the data the best models

generally are those with fewer latent variables.  
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Figure 5.16.  Continuum Regression PRESS Surface From Models of First Order Process
(Model 1) with 5% Process Noise.
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Figure 5.17.  Continuum Regression PRESS Surface From Models of First Order Process
(Model 1) with 40% Process Noise.

The same information in Figures 5.16 and 5.17 is presented in more compact form in

Figure 5.18, which shows the location of the valley bottom for  all the noise levels tested.

In Figure 5.18 each line gives the number of latent variables in the optimum model for each

continuum parameter.  For example, the figure shows that at a noise levels of 5, 10 and

20% of the process gain there are 8 latent variables in the optimum PCR model.  When the

noise level is changed to 40% there are 6 LVs in the optimum model and only 4 LVs in the

optimum PCR model for a noise level equal to 100% of the process gain.  The "b's" in the

figure indicate the location of the best overall model for each noise level tested.

With the frequency domain interpretation of the CR techniques in mind, the shift to

fewer latent variables at higher noise levels can be seen as being similar to filtering of the

process data. The filtering is done so that a range of frequencies is selected that will

optimize the performance of the model resulting from the regression.  In the CR

techniques, as the regression models are built up, progressively higher frequencies are

considered.  While the power in the process output drops off at higher frequencies, the

noise (which is white) does not.  Eventually, a frequency is reached where the ratio of the
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power in the output to the power in the noise is not large enough to obtain an accurate

process model at the frequency, i.e., the model is as likely to describe the particular

noise sequence as it is to describe the process.  When this happens, adding this latent

variable would not improve the predictive ability of the model.  At higher overall noise

levels, the point at which the noise variance overpowers the process variance occurs at

lower frequencies.  This results in fewer latent variables in the optimum models for the

higher noise cases.

0

2

4

6

8

10

0 2 4 6 8

b

b

b

b

b

b indicates best overall

1st order process

__

Number of Latent Variables in Best Model fo

<--PCR    Continuum Param

Nu
mb

er 
of 

La
ten

t V
ari

abl
es

Figure 5.18.  Effect of Process Noise Level on Number of Latent Variables in Best Model
for Each Continuum Parameter.

5.2.5.2               Effect        of        Process        Dynamics

The effect of process dynamics on the location of the best models in the CR parameter

space was investigated by identifying models using an identical input sequence, test

sequence and measurement noise.  Once again, 500 samples were generated for each

process and the same noise sequence, equal to 20% of the process gain, was added to each
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output.  

Figure 5.19 shows the location of the PRESS valley bottom for each process.

The "b's" indicate the location of the best model of each process.  Note how some

processes have more latent variables in the optimum models than others.  The reason for

the differences becomes more apparent after consideration of the Bode Gain plots of the

processes shown in Figure 5.15 and the Bode Gain plots of typical PCR models shown in

Figures 5.10 and 5.11.  The PCR models tend to fit the gain behavior up to a certain

frequency (determined by the frequency of the last PC used) then drop off at the rate of

about a decade per decade.  Processes like the second order under-damped system which

go through a maximum gain then drop off rapidly require a large number of PCs to fit this

behavior accurately.  On the other hand, processes such as the 4th over 5th order system

with gain that starts to drop off at relatively low frequency and decline with slope ~= 1 are

fit very well using only a few PCs.
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Figure 5.19.  Effect of Process Dynamics on Number of Latent Variables in Best Model for
Each Continuum Parameter.
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The effect of dynamics on the location of the optimum models could also be

seen from the filtering point of view considered in the previous section.  Processes

that have more output power at higher frequencies can be fit at these frequencies more

accurately, because the ratio of deterministic to noise variance is greater.  Therefore, more

latent variables, descriptive of higher frequencies, can be used before the regression results

degrade the model performance.

5.2.5.3               Effect        of       Input        Excitation        Level

The effect of differing levels of input excitation on the location of the best CR models

is shown in Figure 5.20.  The lines plotted correspond to the cutoff frequencies of the

different filters used on the original white noise input signal.  In each case a second order

low-pass Butterworth filter was used.  The cutoff given is in units such that 1 corresponds

to the Nyquist frequency (twice the sample rate).  Thus, the filter cutoff of 0.025

corresponds to an input signal with very little excitation in the frequency range covered by

the model, whereas a cutoff of 0.4 constitutes a large amount of excitation.  
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Figure 5.20.  Effect of Input Excitation on Number of Latent Variables in Best Model
for Each Continuum Parameter.

Note how the lines in Figure 5.20 cross.  It appears that as input excitation is

increased, more latent variables are retained in the models identified with large continuum

parameters (techniques close to PCR) while fewer latent variables are used in the models

identified with small continuum parameters (techniques close to MLR).  This trend is

understandable when one considers the frequency domain interpretation of how the

techniques work.  For MLR models, a greater amount of input excitation keeps the

autocorrelation matrix better conditioned and results in a good solution.  For PCR models,

when there is a nearly equal amount of power at all frequencies (large amounts of input

excitation), the PCs for a finite data record may be descriptive of any frequency or

combination of frequencies, i.e., the systematic extraction of eigenvectors of progressively

higher frequency does not occur.  To some extent these PCs may be quite arbitrary, and it

may take a large number of them to adequately model the system response.  

5.2.5.4               Effect        of        Time        Delays

Processes often have pure time delays between input changes and output responses.

If the length of these delays is known this is taken into account during the model

identification.  Only inputs that can effect the output are included in the regression matrix,

which may mean that one or several of the left hand columns of X  in section 4.1 are

eliminated  The objective is to avoid estimating any coefficients that are known to be zero

since any estimate is necessarily less accurate than the true value of zero.

The effect of incorrect estimation of time delays is shown in Figure 5.21, which

shows the location of the best models for time delay errors of 0 (time delay equal to time

delay assumed) to 5 units (time delay 5 units greater than that assumed).  The true process

is Model 2 (second order over-damped), a PRBS input sequences was used to generate the

data on the noise level is 20% of the process gain.  As can be seen from the figure, the best

models for the mis-estimated cases typically have more latent variables than for the case
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where the time delay estimate was correct.  
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Figure 5.21.  Effect of Mis-Estimated Time Delay on Number of Latent Variables in Best
Model for Each Continuum Parameter.

The result of more latent variables in systems with incorrect time delay would be

expected based on the way that the CR method imposes correlation on the FIR coefficients.

The method can be thought of as approximating the true response with smooth functions

that look like sines and cosines.  The jump from a coefficient of 0 to some larger value is

not "smooth" and requires PCs that look like higher frequency terms in order to fit it.

Incorrect estimation of the time delay by progressively larger amounts does not further

increase the number of latent variables in the optimum models, in fact, there is some

evidence that the number of latent variables actually decreases.  

The actual model errors for the best models for each time delay error are shown in

Figure 5.22, i.e., the figure gives the error of the models in the "bottom of the valley".  It

is apparent that the models identified by CR suffered a relatively larger adverse effect than

the MLR models, but they are still better in an absolute sense.  Note how the model error
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does not increase as the error in the estimate of the time delay is increased.  
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Figure 5.22.  Model Errors for Correct and Incorrectly Estimated Time Delays.

It is important to point out that in the event of an incorrectly assumed time delay the

leading FIR coefficients may not appear to be very near zero, and will also tend to look

smooth as if they were modeling a true response.  Thus, a cursory look at the leading

coefficients may not lead one to check for a time delay.  This is an artifact of the method,

and the user should be aware of this potential problem.  Furthermore, as Figure 5.22

shows, the model error improves dramatically when the system time delay is correctly

estimated.

5.2.5.5               Effect        of        CR        on        FIR        Coefficients

Before leaving the subject of FIR model identification, it is interesting to look at the

effect of the CR identification method on the FIR coefficients for a typical case.  A

simulation was performed where a first order process (Model 1) was used to generate an

input/output data set consisting of 500 samples.  The input was a PRBS (generated using

the filter in Table 5.1) and the process noise standard deviation was equal to 20% of the
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process gain.  CR was used to identify FIR models of the process with 30

coefficients.  The performance of the identified models was then assessed against the

true model performance using three different inputs: white noise, a PRBS similar to the

input from the identification data and a step.  Figure 5.23 shows the true FIR coefficients

of the first order process along with some of the models identified from input/output data.  
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Figure 5.23.  FIR Coefficients Identified from First Order System with Noise = 20% of
Process Gain.

The models shown in Figure 5.23 are each "best" in some way, illustrating the point

that the "best" model depends upon the criterion one chooses.  The model labeled "Best

Random" in the figure (second from the front) is most accurate relative to the true model

when tested with a white noise input.  The model labeled "Best PRBS" (third from the

front) is best when tested against a PRBS similar to the one used for its identification.  The

model labeled "Best Step" (fourth from the front) has minimum error when a step test is

used as the criterion.  Finally, the MLR model (rearmost in the figure) is the one that "fits"

the calibration data best in a least-squares sense.  Note the jaggedness of the MLR model
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relative to the others.  This is a result of the "ill conditioning" of the problem due to

the near rank deficiency of the input autocorrelation matrix and the correlation in the

FIR parameters themselves.

5.3  Continuum Regression for ARX Model Identification

In this section the effect of using Continuum Regression for the identification of ARX

models is considered.  It might be expected that there is less to be gained from using CR

for ARX identification.  There are typically fewer parameters to estimate and the correlation

between them is less significant.  Furthermore, from a theoretical standpoint, a properly

posed ARX regression problem is not ill conditioned.  If the proposed orders are either

correct or less than the true orders of the process, the X  matrix should be of full rank

(provided that adequate input excitation has been used to generate the data).  In fact, a rank

deficient X matrix is an indicator that the problem has been over-parameterized, as pointed

out in Ljung (1987).

Unlike the FIR case, it is difficult to characterize the result of a PCA decomposition

of the input correlation matrix for ARX regression, i.e., there does not appear to be a

simple frequency domain interpretation of this decomposition.  This is due to the more

complex nature of the correlation matrix for ARX models.  The X  block includes both

input and output values; this leads to a correlation matrix that includes correlations between

lagged inputs and lagged outputs.  

Numerical results indicate that ARX models identified with PCR show behavior that

is similar to that seen in FIR identification.  An example of this is Figure 5.24, which

shows the Bode Gain plots of ARX models identified with PCR.  The true system is model

7 from Table 5.2, a 4th over 5th order under-damped system.  The process orders were

correctly specified in the model identification procedure, and the data were noise free.  A

PRBS input was generated using the filter in Table 5.1, as described in section 5.2.2.  The

ARX models identified using 1-5 PCs are shown.  As in the FIR case (compare with
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Figures 5.10 and 5.11), the 1 PC model accurately describes only the low frequency

behavior of the system.  Additional PCs improve the high frequency accuracy.  There

is also some evidence of the pattern of gain "dips" as seen in the FIR case, but this artifact

is not nearly as pronounced here.
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Figure 5.24.  Bode Gain Plots of Process Model 7 and ARX Models Identified with PCR.

Tests were performed to investigate the effect of different factors on the quality of

ARX models identified by CR.  The same factors used in the FIR model identification

experiments were considered, along with the additional possibility of an incorrect choice of

model order.  This was not a factor for FIR model identification because FIR models make

no assumption about process order.

In almost all the cases considered, there was little difference between the best CR

models and those obtained with MLR.  In particular, when test processes with low orders

were used, differences between the best CR models and the MLR models were typically

very small.  In these situations the optimum CR models were often those that used all the

latent variables, i.e., the MLR solution.  The largest differences were for the cases of very
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high noise, over-parameterized models and very little input excitation.  Generally, the

trends observed in FIR identification with CR were similar to those observed in ARX

model identification, but were usually the less clear than in the FIR case.  Some highlights

of the simulations performed are given in the paragraphs that follow.

PRESS surface plots for a very high noise test are shown in Figures 5.25 and 5.26.

This test was performed using model 7 in Table 5.2 as the true system.  The model orders

were correctly specified and the noise standard deviation was 40% of the process gain.

The input was a PRBS generated using the filter in Table 5.1.  In Figure 5.25, a PRBS

with frequency content similar to that of the calibration data input was used to test the

models.  In Figure 5.26 a white noise signal was used for the test.  Note how most of the

best CR models for each continuum parameter are only slightly better than the MLR model.

The best overall model (with a continuum parameter of 2 and 5 latent variables) has about a

35% smaller error in the PRBS test.  Also, while the PRESS surface is similar to that seen

in the FIR case, the "valley" is not nearly so well defined and is somewhat fragmented.

There are also multiple local minima.   

It is also apparent that the PRESS valley is more pronounced in Figure 5.26 where a

random input was used to test the model.  This is consistent with the FIR identification

experience in the previous sections.  A random input signal emphasizes higher frequencies

more than a PRBS, and in the tests performed here CR tends to get models with better

behavior in the high frequencies.  Thus the PRESS valley is more pronounced when a

random signal is used as a test.

The effect of process noise on the location of the best models in the CR parameter

space is shown in Figure 5.27.  Once again the true process is model 7 from table 5.2, and

the system order was properly specified.  Separate PRBS input sequences generated using

the filter of Table 5.1 were used for calibration and testing.  The figure shows the number

of latent variables in the best model for each value of the continuum parameter.  
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Figure 5.25.  PRESS Surface for ARX Models Tested Against PRBS.
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Figure 5.26.  PRESS Surface for ARX Models Tested Against Random Input.

Note that while the general trend is as we expect, i.e., there are fewer latent variables

used at higher noise values, there is some irregular behavior in location of the best models.

In particular, there are several instances where there are jumps to more latent variables as

the regression technique moves towards MLR.  This was seen in FIR identification only

very rarely.  In the ARX identification experiments performed here it was very common.
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Tests with over-parameterized models showed similar behavior with added noise.  
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Figure 5.27.  Number of Latent Variables in Best Models for Different Noise Levels,
PRBS Test.

The effect of over-parameterization was also investigated.  As mentioned previously,

CR had a larger relative advantage over MLR with over-parameterized models.  Even in

highly over-parameterized models, such as specifying sixth over seventh order when the

true process is fourth over fifth order, the difference is not great.  The location of the best

models in the CR parameter space tended towards more latent variables as higher process

orders were specified, though not as fast as the order increased.  For instance, if both the

numerator and denominator orders were specified to be higher than the actual process order

by 2, the number of latent variables at optimum might increase by 2, but not by 4.  In

general the trends in this series of experiments were not strong.

The effect of input excitation was similar to that found in FIR model identification.

ARX models identified by  MLR degraded more rapidly than those identified by CR as

input excitation was decreased.  The optimum models also tended towards fewer latent
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variables, though this effect was not as pronounced as with FIR.  As an example, the

PRESS surface for a very high noise case with very low input excitation is shown in

Figure 5.28.  The true model is number 7 from Table 2.  The input for the calibration set

was 7 random steps (4 up and 3 down) over a 500 sample time period.  Process noise was

40% of process gain and the model orders were correctly specified.  Only in these very

adverse situations is the difference between the best CR models and the MLR model this

pronounced.  
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Figure 5.28.  PRESS Surface for High Noise Low Input Excitation Case.

The Bode plots of the "best" models from the high noise low input excitation case are

shown in Figure 5.29.  The "Best Random Model" refers to the model that was best when

tested against the true process using a white noise input sequence, while the "Best PRBS

Model" refers to the model that is best when tested using a PRBS similar to the calibration

input sequence.  This figure demonstrates that the CR models are closer to the true

response at most points, but not at all.  Once again, the best model depends upon the

criterion specified.
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Figure 5.29.  Bode Gain Plots for True Process and ARX Models Determined by CR and
MLR.

When using CR for ARX model identification in practice, finding the optimum model

may be quite difficult.  It has been demonstrated that the minima can be quite shallow.

These would be even more difficult to find when testing the models against noisy data sets.

In this series of simulations we have had the luxury of testing the models against the true

system.  Even so, the location of the best model is often unclear.  

In summary, it appears that CR offers advantages for ARX model identification only

in very difficult situations, e.g., when there is very little input excitation and a great deal of

measurement noise.  Under most circumstances, the relatively small potential gains in

model accuracy combined with the difficulty in identifying the best models make existing

methods more attractive.

5.4  PCR and PLS for Non-Linear FIR Model Identification

While PCR and PLS are linear techniques, it is easy to modify them for non-linear

model identification.  In this section the basic ideas behind non-linear PCR and PLS are

discussed and an example of identification of a non-linear process model is given.  It is not
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intended that this section provide a comprehensive treatment of the subject of non-

linear biased regression.  Instead, this example serves as an indicator of the potential

of biased  non-linear techniques.  

5.4.1  Non-Linear Versions of PCR and PLS

A non-linear version of PCR can be implemented by proposing a non-linear

relationship between the X  block scores T and the output y .  The form of the non-linear

relationship can be arbitrary (such as a polynomial), or it may be arrived at through

theoretical consideration of the process.  Often, plots of the X  block scores versus y will

suggest a particular non-linear relationship.

As an example imagine that the output y is to be fit to the first k X  block scores Tk

using a second order polynomial.  Thus it is proposed that

y = [t12 ... tk2 t1 ... tk 1] b (5.18)

where b is a vector of regression coefficients to be determined.  Taking some liberties with

the notation, this can be rewritten for a collection of input output pairs as

y = [Tk2 Tk 1] b (5.19)

where it is understood that Tk2 indicates squaring the elements of Tk, and that 1 indicates a

vector of ones of appropriate length.  Once the PCA decomposition of the X  block has

been obtained, the vector b can be estimated with the normal equations

b̂  = ([Tk2 Tk 1]'[Tk2 Tk 1])-1[Tk2 Tk 1]'y (5.20)

This procedure can be contrasted with polynomial regression.  If a second order

polynomial fit is proposed, then the resulting relationship is

y = [X2 X 1] b (5.21)



1

50

1

50

where the notation is as in equation (5.20).  Note that the matrix in brackets in (5.21)

is no better conditioned than X alone, and is possibly worse.  Thus, this problem is at least

as unstable as the typical linear model problem.

Non-linear versions of PLS are accomplished in an analogous manner.  A non-linear

form is proposed for the PLS inner relationship.  This inner relationship is normally

calculated with equation (2.48), which assumes that the relationship between the X-block

scores ti and the Y-block scores ui is a linear one.  In non-linear PLS, a non-linear form

such as that proposed in equation (5.19) is used, and the estimate of the coefficients are

calculated from the normal equations as in equation (5.20).  At each step the algorithm

determines a vector in the X-block whose scores have the highest covariance with the Y-

block residual.  The scores are fit using the desired non-linear relationship, the estimates of

Y (or its residual) are calculated and then subtracted off, forming the residual for the next

step.

5.4.2  An Example Using Non-Linear PCR and PLS

As an example, non-linear PLS and PCR were applied to data from the tank apparatus

described in Haesloop and Holt (1990a).  This system consists of a tank with an outlet

designed expressly so the tank outflow rate would be a highly non-linear function of the

tank level.  The output from this system is the voltage signal from the level measurement

device.  The input is the voltage signal to a pump which supplies water to the tank.

Haesloop and Holt used this process to test a neural-net identification method.  It is used

here to test non-linear PLS and PCR for identifying a non-linear FIR model.  

Haesloop performed a series of identification experiments in which the input was

varied in a pseudo-random fashion and output data were collected.  An example of such an

experiment, which is used here as calibration data, is shown in Figure 5.30.  The plotted

input and output values are voltages.
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Figure 5.30.  Non-Linear Tank Calibration Data.

After scaling the input/output data to zero mean and unit variance, several linear FIR

models were identified using different numbers of past input values.  The best results were

when the last 6 values of the process input were used.  At this point PLS and PCR models

with polynomial inner relationships were used to model the process.  Preliminary testing

showed that the use of second-order polynomials provided better predictive models than

higher order polynomials.  A series of cross-validation tests using the calibration data

showed that the PLS model with minimum prediction error (PRESS) was the one with 5

latent variables, while the best PCR model also retained 5 principal components.  For

comparison, a model was formed using second order polynomial regression as in equation

(5.21).  The estimate of b was obtained using the normal equations.  Several attempts were

also made to linearize the input/output data and fit a linear model.  The best linearization

method tested was simply to square the output voltage.  

For comparison purposes, Haesloop used two neural nets with 6 input nodes, 6

hidden nodes and 1 output to perform an identical test using the same data.  One of the



1

52

1

52

neural nets had the standard configuration, while the other had Direct Linear Feed-

through (DLF) terms, as described in Haesloop and Holt.

The fit of all of the regression models to the calibration data is shown for a 140 point

segment in Figure 5.31.  The fit errors (sum of squared residuals) for the entire calibration

data set are given in Table 5.3.  Note that the fit error of all the non-linear models and

transformed linear model are about equal.  The linear model fit is considerably worse.  Of

the non-neural net models the polynomial regression model has the best fit to the data,

while overall the conventional (no DLF terms) neural net is best.

The models were then tested using data from another experiment.  The purpose of

this was to assess the predictive ability of the final models on a totally independent data set.

This test data covered a narrower output range than the calibration data, thus this was an

interpolation test.  Each of the models was used to predict the process output and the

PRESS was calculated for each model.  The PRESS numbers are given in the right most

column of Table 5.3.  Of the regression models, the non-linear PLS model was found to

have the smallest prediction error, followed by the non-linear PCR model and the

polynomial regression.  The linear model applied after the data transformation was

somewhat worse than the non-linear models, and the strictly linear model had the largest

error.  The error of the conventional and DLF neural nets were the best overall, being about

two-thirds that of the non-linear PLS model.  Note that, even though the fit of the neural

nets to the training data is about a factor of 5 better than for the regression models, the

prediction error is only about 30% less.
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Figure 5.31.  Segment of Calibration Data Set Showing Model Fits.

Table 5.3.  Model Fit Errors and Prediction Errors for Non-Linear Process

     Model                                            Fit        Error                 Prediction        Error       (PRESS)   

Linear FIR 211.0 105.5

Non-linear PLS 20.6 3.7

Non-linear PCR 27.8 7.2

Polynomial Regression 20.1 8.4

Transformed Linear 27.5 11.8

Neural Net 3.8 2.5

DLF Neural Net 4.2 2.5

A segment of the actual and predicted data for the regression models is shown in

Figure 5.32.  While it is apparent that all models gave poor predictions under certain

conditions, the model identified by non-linear PLS almost always lies closest to the actual

process output.  All of the models appear to be free of any fit artifacts, such as drastic

overshoots after step changes.  Such artifacts were observed in the non-linear PLS and

PCR models using 6 latent variables.  When using non-linear PLS and PCR, it is prudent
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to look for fit residuals with this type of odd behavior, which can be a sign of over-

fitting.

This data set provides a classic example of the perils of over-fitting a data set.  Note

that (of the conventional models), while the polynomial model fit the calibration data the

best, it did not predict the test data as well as either the PLS or PCR models.
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Figure 5.32.  Test Data Set Showing Actual and Predicted Process Output.

The comparison to neural networks shows that the non-linear versions of PLS can be

quite competitive with this technique.  The neural network results are somewhat better, but

all the non-linear models are quite good.  The complexity of the neural network model (and

its transportability) make it both harder to calibrate and more difficult to use.  The

computation time required for calibration of the neural network models was also very large

relative to the PLS based models.  Complete calibration and testing of the PLS models for

this data set was done in ~5 minutes on a Macintosh IIx, while the neural network

calibration required several hours on a high powered Apollo workstation.  The much faster

computation time of the PLS models would allow the modeler to become more involved in
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the model building process.  Should massively parallel computers become readily

available, however, the computational advantages of PLS would diminish.

5.5  Conclusions Concerning CR for Dynamic Modelling

In this chapter the effect of continuum regression on the identification of dynamic

models has been considered both from a theoretical and a practical standpoint.  It has been

demonstrated that the theory developed here concerning the effect of eigenvector

decomposition on input matrices accounts for the observed behavior of FIR models

identified by CR.  

There does not appear to be an advantage to using CR for the identification of ARX

models, as might be expected.  Under some very adverse circumstances, such as high

process noise and low input excitation, this technique might produce better models than

conventional techniques.  However, because of the rather fragmented nature of the model

error surface it may be difficult to locate the best models in the CR parameter space.

Finally, there does appear to be some incentive for the use of PLS with non-linear

inner relationships.  The technique can provide a quick alternative to more computationally-

intensive techniques like neural networks, and provide very satisfactory results.



6.0               Conclusions

This work has considered several aspects of the process monitoring and modeling

problem and how biased multivariate techniques can be used to attack them.  The

developments introduced in Chapters 3, 4 and 5 are reviewed in the sections that follow.

6.1  Process Monitoring with PCA

In Chapter 3 it was shown how PCA relates to the state-space model format.  For

processes with more measurements than states, a PCA model can be developed that

captures the variations of the "immediately observable" states and leaves only the process

noise in the PCA residuals.  Statistical tests can be applied in order to determine whether

the residuals from an evolving process violate the null hypothesis regarding their expected

mean and variance.  If so, this indicates a change in the underlying system.  For example,

sensor drift (added bias) is detected by a change in the mean of the PCA residuals and

increased measurement noise results in changes in the variance of the residuals.  Changes

in individual sensors are detected by monitoring the PCA residuals from each sensor.  In

most cases the failed sensor can be identified as the one having the largest shift relative to

its expected value.  

It was demonstrated in Chapter 4 that, when actual process data is used, there is a

trade-off between the sensitivity and specificity of PCA monitoring.  As the first several

PCs are added to the model, both the sensitivity and specificity improve.  At some point,

however, as the number of PCs retained in the process model is increased the specificity of

the monitoring method suffers resulting in a model that is less effective overall.

In actual processes, the assumption that there are fewer process states than

measurements is clearly an approximation.  In many processes, however, the dynamics of

the system are dominated by a few states and the effect of minor states is quite transient.

Under these conditions, changes in the minor states can have the appearance of noise and
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can be treated as such.  This is particularly true for sampled data systems, and in fact,

an increase in the sample time (so that the decay time of the minor states is small

relative to the sample time) can make the data appear as if there were fewer states.  Because

the assumption of fewer states than measurements is an approximation, in practice it may

not be a simple matter to determine the "correct" number of PCs to retain in the process

model.  In this case, the number of PCs to retain becomes an optimization problem where

the model developer would have to specify the desired weighting between sensitivity and

specificity.

The most significant result of the low order approximation for the PCA models is that

the residuals will be autocorrelated, though generally to a much smaller degree than the

untreated variables.  In this case, it is misleading to use statistics that assume independent

observations to detect changes in the residuals.  In this work, the rather brute force

approach of using the observed mean and variance of data subgroups has been used to set

limits.  This option works effectively when the number of samples available for calibration

is large, i.e. several thousand, as is the case in the examples included here.  On the other

hand it would be possible (and perhaps preferable) to use alternate procedures specifically

designed to treat correlated observations.  These approaches generally require a model of

the autocorrelation, and one tests for significant deviations from this model.

While the PCA monitoring technique developed here has a limited range of

applicability, i.e., processes that can be adequately approximated as having more

measurements than states, it has the advantage that it is very simple to develop from

existing process data.  It is not necessary to develop an entire dynamic model of the

process.  This is a distinct advantage in that there are many processes for which it is very

difficult to develop an accurate dynamic model from either theory or observation.  This is

certainly the case with the LFCM studied here.  

Advances in process instrumentation will undoubtedly result in more processes which
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meet the more measurements than states criteria, making PCA monitoring applicable.

In particular, PCA monitoring will be quite useful for processes that utilize on-line

spectroscopy where many wavelengths are considered.

6.2  Process Monitoring with PLS

Many of the conclusions regarding PCA monitoring can also true of PLS monitoring.

This includes the tendency of the models to less specific as the order (the number of latent

variables retained in the regression) is increased.  There are also several important

differences, as indicated in the paragraphs that follow.

It was shown that, even in the ideal case of a linear process with fewer states than

measurements the PLS method did not produce uncorrelated residuals.  This is a

consequence of the fact that PLS regression models map some of the process state

information into the residuals.  In order to improve prediction, PLS emphasizes

combinations of variables that have the highest covariance with the predicted variable.  This

results in biased estimates of the output.  In the case of process monitoring, state

information that is not very predictive may get left out of the model and end up in the

residuals, resulting in autocorrelation.  In spite of this, the PLS models, with residual limits

adjusted to account for serial correlation, performed better in simulations than PCA models,

particularly when the process input characteristics were similar in the test and calibration

sets.  Adding serial correlation to the process inputs degraded the performance of the PLS

models, as would be expected due to the mapping of state information into the residuals.

A major performance advantage for PLS models is that models of mixed order may

be developed.  Collections of PLS models are not constrained to having the same number

of latent variables in each model.  In this sense, the PLS models can be thought of as an

optimization of the number of latent variables to achieve the most robust prediction of each

variable as opposed to the entire set of variables.  It was demonstrated in Chapter 4 that

mixed-order models can be a significant improvement over models of fixed order.
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Unlike PCA models, PLS models do not suffer a large reduction in sensitivity

as the model order is increased.  In PCA models, this decrease in sensitivity is due to

the fact that as PCs are added to the model, the subspace assigned to normal variation

(driven by changes in process states) grows at the expense of the subspace of variation due

to noise.  Thus, unusual variations become more and more likely to fall into the subspace

of normal variation.  PLS models, on the other hand, only become less sensitive when the

prediction error increases because of the addition of too many latent variables.  To the

degree that the prediction error does not increase greatly, the sensitivity of the PLS model

does not suffer significantly.

The specificity of PLS models suffer as the number of latent variables is increased

largely because the models tend to rely more heavily on fewer variables as more latent

variables are added.  In this sense, the models become less robust and prediction error

(residuals) can become very large when sensors that are heavily weighted in the regression

fail.  Thus, the criteria for choosing the number of latent variables to retain in each of the

individual PLS models cannot be based on prediction error alone, as this often results in

models which are not very robust.

PLS models will apply under all conditions for which PCA models apply.  Based on

the results of simulations, particularly those employing actual process data, it would be

expected that PLS monitoring would be more effective than PCA, particularly when the

conditions are unfavorable.  This would include situations where it is clearly an

approximation to assume that the number of process measurements is much greater than the

number of process states.  One potential drawback of the PLS method, however, is that it

appears to be more sensitive to input characteristics than PCA.  When input characteristics

change PLS model performance can be expected to suffer.



1

60

1

60

6.3  Continuum Regression for Process Modeling

In Chapter 5, the effect of continuum regression on the identification of FIR

and ARX models was considered.  Of particular interest was the frequency domain effects

of the CR method on the identification of FIR models.  It was shown here (both

theoretically and by demonstrations) how PCR, one extreme of CR, has the effect of

decomposing the input sequence into separate frequency components.  Each successive PC

in the PCR model represents a frequency with progressively less power in the input

sequence.  As models are built up from the PCs, they fit the behavior of the true process in

the frequency ranges where there was the most power in the input signal.  This frequency

effect is also evident  when other methods in the continuum are used to identify models,

but, as would be expected, the frequency effect is not as pronounced as the methods move

further from the PCR edge of the continuum.

In this work the CR predictive residual error surface was elucidated and explained in

terms of the behavior of the underlying methods.  The effects that process dynamics, noise,

input excitation have on the location of the optimum model in the CR parameter space were

all understood to be consistent with expectations based on knowledge of the methods.  A

particularly good example of this is the effect of process dynamics where it was shown that

the true process dynamics had a large effect on the number of latent variables required for

the model to adequately describe the process.  It is clear from the simulations performed

here that the CR method is a considerable improvement over MLR for the direct

identification of FIR models.  

It is much less clear whether CR offers any advantages for the identification of ARX

models.  It was shown here, both through theoretical considerations and through

simulations that CR would probably not offer great advantages over existing methods

except, perhaps, under very adverse circumstances.  These circumstances would include

cases of very high measurement noise, small amounts of input excitation and over
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parameterized models.  It was also shown through simulation that the ARX model

error surface, besides having shallow minima, could also have several local minima.

This makes it uncertain that one could define a reliable method to find the optimum model

in the CR parameter space.

Finally, the example use of PLS and PCR for identification of non-linear models

demonstrates the potential of these techniques.  It is argued here that the non-linear

identification problem is at least as ill-conditioned as the corresponding linear problem, and

therefore, that techniques designed to cope with ill-conditioning should offer some

advantages.  Furthermore, these techniques appear to be competitive with neural net

techniques, at least in some applications.  Computation time for the non-linear PLS based

methods is very small relative to the amount required to train neural nets.  These regression

methods also have the advantage that, unlike neural nets, they produce an answer to a given

calibration problem that is not dependent upon starting conditions.  Thus, the methods are

potentially more fool-proof since they require less judgement about whether the final

solution is a good one.  Though this work provides but a single example, it is evident that

there is great promise in the non-linear biased techniques.

6.4  Suggestions for Future Work

While the process monitoring methods developed here show great promise, this work

does not attempt to quantify the expected performance of these methods relative to existing

techniques.  More detailed studies should be performed that compare the PCA and PLS

monitoring methods to methods requiring complete dynamic process models.  One major

advantage of the PCA/PLS methods is the ease of model development.  Therefore, it would

be particularly interesting to perform tests where the dynamic model of the process would

have to be identified prior to development of the fault detection system.  In these cases the

errors in the dynamic model would be expected to have a significant impact on the detection

system accuracy.  It is the author's belief that it is in these situations where the methods
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developed here would have their biggest potential impact.

Future work in the area of CR for model identification would certainly include

systems with multiple inputs.  In this case, the frequency domain interpretation of the

methods would not apply directly.  Thus, it would be expected that some investigation into

the effect of multiple inputs would be necessary.  Finally, while the potential of biased non-

linear identification was demonstrated here, very little was done here with the theory behind

it.  Further work in this area could be particularly fruitful.
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Appendix        1.               Dynamic        Process       Investigation        with        PCA

It is the purpose of this appendix to document the accumulated experience that the

author has gained applying the PCA method to dynamic process data.  Unfortunately, the

process data available for this work has been limited.  For this reason, it is difficult to reach

definite conclusions about the general applicability of the method to other processes.

However, there are several instances where the results of the analysis have been found to

be quite instructive, and therefore, useful.  There have also been some rather ambiguous

results that serve as a warning to those that would try to read too much into PCA models.

The examples in this appendix come from two LFCMs of slightly different

configuration.  One of these is the West Valley melter described at the end of Chapter 2.

The other is a slightly smaller melter (known as the Pilot Scale Ceramic Melter or PSCM)

with a two electrode design that is located at Battelle Pacific Northwest Laboratories in

Richland, Washington.  With the exception of the electrode design, the two melters are

quite similar.

To illustrate both the utility and the potential pitfalls of applying PCA to dynamic

data, the initial PCA study on melter foaming (Wise and McMakin 1987) will be

reconsidered.  The results of this study will be combined with some more recent analysis of

the same data.  In the second section some results from the West Valley LFCM will be

considered.

A1.1  PCA Study of Melter Foaming

The major objective of the PCA melter foaming study was to determine if PCA could

be used to identify LFCM glass foaming events.  Melt foaming has been a cause of concern

since the early development of LFCMs (Burkholder and Jarrett, 1986).  During normal

operation, melter feed forms a "cold cap" in the center of the molten glass pool.  The slurry

often pools in the center of this cold cap, then boils continuously, evaporating water from
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the slurry.  During a foaming episode, gas, primarily oxygen, is released in the melt.

The gas bubbles to the surface of the melt, forming a stable foam that often

completely obscures the cold cap.  

Foaming is caused by dissolved water and oxygen in the glass melt, and for this

reason highly oxidized glasses have a higher potential for foaming than reduced glasses.

This is because oxidized glasses release oxygen when changed to a lower oxidation state.

Foaming incidents tend to be "runaway"; once foaming begins, it forms an insulating layer

on the melt surface which causes the melt temperature to rise rapidly.  The temperature

increase, in turn, promotes a change to lower oxidation states for some of the glass

components, which causes more oxygen to be released.  The result is a loss of process

control, which can only be remedied by shutting off the flow of the melter feed and

reducing the melter power input until the glass surface has cleared of foam.  Such

interruptions result in process downtime and decreased glass production rates.  Foaming

episodes also have the potential to damage equipment.  Unfortunately, the mechanism that

triggers foaming is not entirely understood.

Before foaming episodes can be controlled it is necessary to determine what happens

prior to and during foaming.  PCA was used to identify the processing trends associated

with foaming.  Data for this study was obtained during a 300-hr demonstration test at PNL

in May and June of 1985 using the PSCM.  Several foaming incidents were detected during

the test, both by visual observation of the melt surface and by a prototype pneumatic sensor

designed specifically to detect the presence of foam above the cold cap.

A1.1.1  Review of Original Foaming Study

In the original study, seven variables were chosen for the analysis:  glass

temperatures at five separate depths, the glass resistance, and the melter power.  Due to

software limitations, one hundred data points were selected for the analysis:  1 data point

for each 3 hour period of the test and 5 data points from each of the 2 major foaming
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episodes that occurred during the test.  

Because of the large differences in the variance of the variables, the data was

autoscaled10 before being subjected to PCA.  The loadings plot of this data, Figure A1.1,

shows that most of the variance in the data set (43%) was caused by changes in the bulk

glass temperatures shown along the first principal component (horizontal axis).  The melter

power input, resistance and the surface temperature loaded most heavily into the second

eigenvector (27% of the variance).  Thus 70% of the total variance in the data set was

captured in the first two eigenvectors.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

melter foaming loadings plot goes here

Figure A1.1.  Loadings on First Two Principal Components in Melter Foaming Study.

The scores plot for the data is shown in Figure A1.2.  The plot shows that the

operating data clusters around the center point in a seemingly random "shotgun blast."

However, the data points taken during foaming (shown as triangles) all lie in the upper

                                                
10The effect of other scalings for this data is considered in Section A1.1.2.  The effect of scaling on a

West Valley LFCM data set is also considered in Section A1.2.
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right-hand corner.  Even more significant, data points that were taken as much as 6

hours prior to foaming incidents (shown as squares) are located just to the left and

below the foaming points.

The fact that this technique separates normal operating data from foaming and

prefoaming data suggested that the method had potential to as a real-time process control

aid, provided that it could be determined what caused the two groups of data points to be

separated on the scores plot.  In this case the scores plot could be interpreted by using the

information on the loadings plot.
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Figure A1.2.  Scores on First Two Principal Components in Melter Foaming Study.

On the scores plot, the prefoaming are high (strongly positive) on both the first and

second principal component .  A score that is high on the first PC indicates that the sample

was taken when the bulk glass temperature was above average: the temperature variables in

the bulk of the glass all load positively into the first PC.  A score that is high on the second

PC indicates that the power is low relative to the surface temperature: power is loaded
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negatively into the second PC and the surface temperature is loaded positively.  By

the onset of foaming, the operating point has shifted further upward and to the right

into the cross-hatched region of the plot, indicating yet a lower power relative to surface

temperature, and somewhat hotter bulk glass.  When the foaming gets underway, the

operating point moves to the right (not apparent in the figure), indicating hotter bulk glass,

and downward, indicating hotter surface temperatures and lower power as the melter

controller begins to turn down the power.

Based on the principal component analysis it is possible to observe clearly the events

which precede foaming.  In the "normal" operating range, the temperature gradient is large

between the bulk of the glass and the surface, and the power is high relative to the bulk

glass and surface temperatures.  In the prefoaming stage, however, the bulk of the glass

(temperatures 2, 3 and 4) has become hotter, (causing a move to the right) and the ratio of

the power level to the bulk and surface temperatures has decreased (causing a move

upward).  Temperature gradients are generally smaller than during "normal" operation.  At

the onset of foaming, the power-to-surface temperature ratio decreases further and the bulk

glass temperature continues to increase.  

The major question concerns the physical relationship between the reduced

temperature gradient, lower power requirement and the onset of foaming.  By using

fundamental knowledge about the system and other data recorded by operators it is possible

to theorize about the fundamental causes of foaming.  Generally, foaming occurs during

periods of high feed rate (a variable which was unavailable in this study) when the cold cap

coverage is large.  The results of numerical simulations such as that done by Davis (1988)

agree with the observations of melter operators that power requirements actually decrease

during high feed rate periods when the cold cap is large.  This is due to the insulating

properties and radiative heat transfer shielding effects of the cold cap.  Thus, the cold cap

should have the effect of flattening temperature gradients underneath it since heat transfer
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through the glass surface is reduced.  It is logical that the mass transfer rate between

the bulk glass and the surface would also be reduced under conditions of a flat

temperature gradient.  This would be due in part to the decreased convection in the glass

when the driving force (temperature gradient) is reduced, and because the cold cap itself

may form an impenetrable barrier to mass transfer.  A decreased mass transfer rate would

cause dissolved gasses, which normally are released gradually, to build up in the melt until

their concentration increases enough to trigger a sudden, large release.

A1.1.2  Re-analysis of Foaming Study Data

One problem with PCA becomes apparent when the analysis is repeated with a

different subset of the same data.  In this case there were no software limitations on the

number of samples for analysis so all of the data was used, with the exception of periods

during manual power shutdowns.  The data sampling rate was once every two minutes.  It

was found that it was difficult to obtain projections that effectively separated foaming,

prefoaming and "normal" data11.  Finally, after trying several scaling options, (scaling

effects will be discussed further in the next section), a projection was found (the first

versus third principal component) that has the same discriminatory power as the projection

found in the initial study.  

The scaling chosen was a variation of mean centering: all variables were mean

centered, then the variance of the power and resistance variables was adjusted to be

approximately equal to the average variance of the other variables.  Mean centering of the

temperature variables was chosen because it emphasizes temperatures which have greater

variance.  It was reasoned that these variables would be better indicators of variations in the

melter system due to their greater "signal to noise ratio."  However, mean centering alone

                                                
11In an unpublished study done for WVNS two other methods were used to create a projection that

was useful for identifying foaming conditions.  One of these methods was VARIMAX rotation; the other
was a projection/rotation based on the means of the three process data subgroups of normal, prefoaming and
foaming periods.  The results of this study generally supported the interpretations arrived at during the
initial PCA study, i.e., projections were found that separated the data into the three regions and the original
variables loaded into these projections in approximately the same way as in the original study.
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leaves the power and resistance variables with very small variances relative to the

temperatures and would greatly de-emphasize them in the PCA.  Therefore, the

variances of the power and resistance were adjusted to be equal to the average variance of

the temperature variables based on the reasoning that these variables are as good of

indicators of conditions as the "average" temperature variable.

The loadings of the first versus third PC are shown in Figure A1.3, the

corresponding scores plot is shown in Figure A1.4.  The stars on the scores plot

correspond to the 10 points (collected over 20 minutes) taken during each of the three

confirmed foaming incidents prior to manual power adjustment.  The circles indicate the 10

points prior to each of the incidents.
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Figure A1.3   Loadings for First versus Third Principal Component for Revised Melter
Foaming Study.
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Figure A1.4.  Scores on First versus Third Principal Component for Revised Melter
Foaming Study.

Note that the loadings in Figure A1.3 look quite different from those shown in Figure

A1.1.  The scores plot, however, splits the operating data in a fashion similar to that of the

initial study.  The interpretation that prefoaming times are associated with a low power to

bulk glass temperature ratios is borne out, but the ratio of the power to the surface

temperature is apparently not critical for separating the points.  The temperature gradient

argument also appears intact as the prefoaming points are positive on the first PC which is

most strongly indicative of surface temperature.  It seems less likely, however, that the

gradient theory would be arrived at from this set of PCs.  Separate calculations of the

gradient, however, have shown that it does correlate with foaming incidents.  Furthermore,

note that the correlation of melter glass resistance with foaming is entirely different in this

analysis than in the original study.  Apparently, resistance has little or no bearing on the

foaming phenomena.

The sample times of the points mixed in with the circles and stars in Figure A1.4
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were determined.  It was found that these points came primarily from times either

preceding (by periods of more than 20 minutes) or immediately after melter foaming.

A small minority of the points are from times where foaming was not observed visually,

but might be suspected based on the temperature record.  It would appear that samples in

the region on the plot are a necessary, but not sufficient condition for foaming to occur.

This makes sense from a physical standpoint.  Glass melts that have recently foamed

certainly have a decreased propensity to foam again soon, as most of their dissolved gasses

have been released.  Reduced glasses, of course, will not foam under any conditions.

This example has shown that the selection of the proper data for test and training sets

is critical to an analysis of this type.  Apparently, this author was fortunate in the original

analysis to have chosen data that resulted in axes that were good discriminators between

foaming and non-foaming data.  It took a considerably larger effort to arrive at a projection

for separating the foaming and "normal" data in the second case.  This illustrates that one

cannot, in general, expect PCA to provide the optimum projection for separating samples

into the desired classes.  In order to obtain the best results, other techniques must

sometimes be used.  In all cases proper selection of the training data sets is very important,

as is sound engineering judgement concerning scaling.

Interpretation of the PCA results, particularly the PC loadings, can also be difficult.

It is important to try to attach physical interpretations to the factors and test these

interpretations to the extent that the data and theory will allow.  The need for an

understanding of the physical processes underlying the phenomena under investigation

cannot be stressed enough.  The PCA results should be taken more as suggestive, rather

than as a final answer.  Furthermore, it is important to remember the difference between

correlation and causality.  
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A1.2  PCA Analysis of SF-11: The Effect of Scaling

As another example of using of PCA for process data analysis, an examination

of data from the West Valley melter taken during a run designated SF-11 is presented here.

Specifically, the issue of data scaling will be considered.  This will be illustrated by

comparing the PCA results from autoscaled versus mean centered data.

The SF-11 run was performed in September, 1989.  Run data is available at 5 minute

intervals for 7 days, of which the continuous feeding portion of the run lasted

approximately 5.5 days.  Only the temperature information will be considered in this

analysis, thus there are 20 variables as indicated in Table 2.1.  A 500 point segment of the

run, representative of nominal operating conditions, was selected for building the PCA

model.  

Because all of the variables are of a similar nature and would be expected to have

similar noise characteristics, mean centering would seem to be the logical choice for

scaling.  This implies, however, that the variables with larger variances, which in this case

will be the near surface and plenum temperatures, are in some sense more important than

the variables with smaller variances, such as those in the bulk glass.  On the other hand, if

one believed that all variables were equally important over their observed range, (i.e. that a

change from -2 to +2 standard deviations was equally significant for all variables), then

autoscaling would be appropriate.  In this case, it is hard to say beforehand, so the analysis

is done below both ways and the results are compared.

The variance captured by the first 10 PCs in the mean centered PCA model is given in

Table A1.1 below.  As the table shows, this data set is very directional, with 76.6% of the

variance being along the first PC.  After the first 4 PCs the size differential between

successive PCs becomes very small.  All PCs after the tenth accounted for 0.22% of the

variance or less.

Table A1.1  Percent Variance Captured by PCA Model of SF-11 Data using Mean
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Centering.

    PC#                     Eigenvalue               %Variance             %Total        Variance   
 1.0000   69.2271   76.6478   76.6478
 2.0000    8.3099    9.2006   85.8484
 3.0000    5.1848    5.7405   91.5889
 4.0000    2.3246    2.5738   94.1627
 5.0000    1.3395    1.4831   95.6458
 6.0000    1.2346    1.3669   97.0127
 7.0000    0.9534    1.0556   98.0683
 8.0000    0.5219    0.5778   98.6461
 9.0000    0.3425    0.3792   99.0253
10.0000    0.2712    0.3003   99.3256

The loadings for the first 4 PCs are shown in Figures A1.5 through A1.8.  In this

case the first three loadings appear to be interpretable.  In the first PC the near surface

temperatures (variables 6 to 9 and 16 to 19) load strongly.  It is known from experience

that this PC is strongly correlated with the melter level.  As the melter level changes the

cold cap slides up and down the thermowells.  This causes the region of steep temperature

gradient in the cold cap to pass over the near surface thermocouples and causing these

temperature variables to vary strongly.  
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Figure A1.5.  Loadings for First PC of Mean Centered SF-11 Data.
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Figure A1.6.  Loadings for Second PC of Mean Centered SF-11 Data.
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Figure A1.7.  Loadings for Third PC of Mean Centered SF-11 Data.
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Figure A1.8.  Loadings for Fourth PC of Mean Centered SF-11 Data.

The only variables which load strongly into the second PC are the two melter plenum

temperatures (variables 10 and 20), which for physical reasons are highly correlated.  The

plenum temperatures also have a very large variance relative to the bulk glass variables.

Thus it is logical that these variables load heavily into one of the first few (rather than latter)

PCs.

In the third PC, the temperatures on either side of the melter are anti-correlated.  The

interpretation of this third PC is somewhat subjective.  It would appear that there is a side-

to-side temperature variation in the bulk glass that is superimposed over the general trend of

the glass temperatures being all highly correlated.  Another way to look at this would be to

say that, while all melter glass temperatures are correlated, the temperatures are more highly

correlated on each side of the melter than between sides.  The fraction of the total variation

attributable to this mode, however, is small (5.7%) relative to the variation due to level

changes (76.6%).  It is possible that there is some natural convection process in the melter

that causes this variation.  This is speculation, however.
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The interpretation of the fourth PC is entirely unclear and serves (possibly) as

an example of the effect of the orthogonality constraints (which may also be affecting

the third PC) and non-linearities on the PCA factors.  This type of effect is common when

PCA is used to model data that may be inherently of low dimensions but, due to non-

linearities, spans a higher dimensional space.  An example of this would be a dish shaped

collection of data in 3 space.  The data is inherently 2 dimensional, but it takes 3 directions

to describe it in linear coordinates.  It is important to remember that each PCA factor simply

describes the majority of the variance that is orthogonal to the previously determined PCs.

When physical processes result in trends that are non-linear, confusing factors can result.

Non-orthogonal trends can also lead to confusing results.

The SF-11 analysis is now repeated using autoscaling for data pretreatment.  The

variance captured by the PCA model is given in Table A1.2 below.  Comparison of Table

A1.2 to A1.1 reveals that autoscaling had the effect of spreading the variance more evenly

over the principal components.  Where with mean centering the first two PCs captured 85%

of the variance, here only 56% of the variance is captured.  Furthermore, if each variable

has the same (absolute) noise level as we would expect here, autoscaling will tend to

amplify the noise in the data set.  In the autoscaling procedure this occurs because variables

with small variances, and thus a relatively large percentage of variance due to noise, are

multiplied by larger factors than other variables in order to achieve a data set where all the

variables have equal variance.

The loadings for the first four PCs from the autoscaled SF-11 data are shown in

Figures A1.9 to A1.12.  Once again, in the first PC the near surface temperatures are

loaded most strongly, and this PC very highly correlated with melter level.  The general

"shape" of the loadings is similar to those shown in Figure A1.3, but the bulk glass

temperatures (variables 3 to 6 and 13 to 16) are loaded more strongly.  The difference is

due to the autoscaling, which increases the relative variance attributable to the bulk glass
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temperature variables.  These variables then become more influential in the PCA

model and load more strongly into the earlier PCs.

Table A1.2  Percent Variance Captured by PCA Model of SF-11 Data using Autoscaling.

    PC#                     Eigenvalue               %Variance             %Total        Variance   
 1.0000    7.8638   39.3188   39.3188
 2.0000    3.2934   16.4671   55.7858
 3.0000    2.6747   13.3734   69.1592
 4.0000    1.9412    9.7058   78.8650
 5.0000    1.1103    5.5517   84.4167
 6.0000    0.8967    4.4835   88.9002
 7.0000    0.6435    3.2176   92.1178
 8.0000    0.3718    1.8592   93.9769
 9.0000    0.2950    1.4751   95.4521
10.0000    0.2779    1.3897   96.8417

The loadings of the second PC (Figure A1.10) are similar to those of the third PC

from the mean centered data (Figure A1.7).  Once again, the loadings indicate that the

temperature on each side of the melter are anticorrelated.  However, as seen in the first PC

of the autoscaled data set, the shape of the loadings has changed.  The near surface

temperatures with large relative variance are de-emphasized and the bulk glass temperature

variables load more strongly.  It is clear that the side-to-side variation shown in the third

PC of the mean centered analysis, whether due to actual variation or noise, is amplified in

importance when the scaling to changed to autoscaling.

The third PC from the autoscaled data (Figure A1.11) is very hard to interpret.  Like

the fourth PC of the mean centered data (Figure A1.8), it appears to be more an artifact of

the method than a true factor.  The fourth PC (Figure A1.12) is quite similar to the second

PC from the previous analysis (Figure A1.6), with the plenum temperatures loading most

strongly.  Here however, there is more apparent correlation of the plenum temperatures

with the near bottom temperatures.
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Figure A1.9.  Loadings for First PC of Autoscaled SF-11 Data.
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Figure A1.10.  Loadings for Second PC of Autoscaled SF-11 Data.
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Figure A1.11.  Loadings for Third PC of Autoscaled SF-11 Data.
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Figure A1.12.  Loadings for Fourth PC of Autoscaled SF-11 Data.

This example shows that scaling can greatly affect PCA results.  Often, similar
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factors result regardless of the scaling employed, but there is no guarantee of this.

Furthermore, the apparent relative importance of the factors can shift; autoscaling

tends to emphasize factors with more variables while mean centering emphasizes factors

with more "unscaled" variance.  In both the example given and in other similar situations

experienced by the author, the mean centering results are more satisfying, and this scaling

option is recommended for initial investigations using data of this type.  Autoscaling is the

preferred option for data sets where the variables are of different units and there is no a

priori knowledge of the relative importance of the variables.  User specified scalings may

be employed when there is a fundamental understanding of the system under investigation.

In any case, judgement should be used concerning the relative importance of the variables

considered and more weight should be given to physically important variables.

It is interesting to note the useful results of the analysis of SF-11, regardless of the

scaling option employed.  Application of PCA has shown that the major variation (using

either scaling) in the temperature data was due to level variations, which are controlled by

the operators.  Another major variation was the plenum temperatures, which are used as

indicators of over or under feeding conditions.  There appears to be some side-to-side

temperature variation, but it is not possible to determine the source of this effect.  Other

useful information concerning the run was obtained from the scores plots and the Q

statistics, which have not been included here.  From this, it was determined the run data did

not show any significant trends with time, and that data from all feeding portions of the run

was statistically similar.

The data reduction aspect of PCA should also be considered.  In the example where

mean-centering was employed it was shown that the 20 variable system could be reduced to

just three factors that explained nearly 92% of the process variance.  This certainly makes

the run data much easier to display and digest.

A1.3  Assessment
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The examples given demonstrate that PCA can be a useful tool for interpreting

multivariate process data.  Great caution is urged, however, because it is also

possible for the results to be ambiguous or misleading.  Furthermore, changes in the data

set, such as inclusion or exclusion of data, or changing the ratio of certain "types" of data,

can lead to very different results.  Scaling can also affect the results.  When in doubt about

the choice of scaling, several scaling options should be tried and the results of the analyses

compared.  Caution is urged when the results change drastically with a change in the

scaling.  Finally, PCA is useful for reducing data sets with large numbers of variables

down to a smaller number of factors.

While one cannot expect the PCA results to always be useful, it happens quite often

that projections of the data can be found that are good indicators of specific process trends,

such as the foaming incidents in the previous examples.  Monitoring these plots in real time

could provide a useful indicator of process upsets, or perhaps impending process upsets.

In the foaming example, this upset could be avoided by lowering feed rate to reduce cold

cap coverage which would promote the transfer of dissolved gases to the melt surface.

This is essentially the same type of approach as that adopted by MacGregor et. al., as

presented at the 1989 annual AIChE meeting (MacGregor 1989) and at the Tronso

chemometrics meeting (MacGregor 1990).  In the examples presented, a polymerization

reactor and a distillation column were monitored using a projection of the process data onto

the first two PCs.  The Q statistics were also monitored.

When sample classification is the objective, other cluster analysis techniques may be

more appropriate.  PCA does not necessarily determine the optimal factors for separating

different classes of data.  When interpretation of the factors is important, techniques such

as VARIMAX rotation should be considered.  The objective of VARIMAX is to rotate the

PCA factors is such a way that variable loadings on each factor tend to be either large or

small but not in between (the rich get richer and the poor get poorer) resulting in more
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interpretable factors. (See for example Veltkamp 1990).

In summary, PCA can be a useful tool in the analysis of multivariate data from

dynamic systems provided that proper caution is used in the use and interpretation of the

results.



Appendix        2:        Equivalence        of        Replacement              and        Rebuilding

In this appendix the equivalence between rebuilding the model and using the corrected

samples on the old model is demonstrated.  Let us call the loadings vectors from our

original model P.  For convenience, assume that the variable to be replaced is the first one.

Let us then partition our loadings vectors such that

P  =  



Pb

Pg   (A2.1)

where Pb corresponds to the row of loadings of the "bad" sensors and Pg corresponds to

the loadings of the "good" sensors.  If we partition our sample x as before

x = [xb | xg] (A2.2)

then the residuals on the original model ro can now be expressed as:

ro = [xb(I - PbPbT) +  xgPgPbT | xbPbPgT + xg(I - PgPgT)] (A2.3)

We can now substitute the estimate of the bad sensor outputs from the equations given in

the text

xb = -xgR21R11-1 (A2.4)

Note however, that R21 and R11-1 can be expressed in terms of Pb and Pg:

R11-1 = (I - PbPbT)-1 (A2.5)

R21 = PgPbT (A2.6)
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By substituting equations (A2.5) and (A2.6) into equation (A2.4), then substituting

that result into (A2.3), we obtain an expression for the residuals of the "corrected"

sample rc:

rc = [0 |  xg[(I - PgPgT) - PgPbT(I - PbPbT)-1PbPgT]] (A2.7)

Here we see that the residuals on the replaced variables is zero, as expected.

We will now calculate the residuals on the new model.  First, however, we must

form the new model by projecting the old model down out of the "bad" sensor dimension.

The basis for this "bad" sensor dimension is

xv = [1 0 0 ... 0]T (A2.8)

Thus, a basis Pn for the new space can be formed by projecting the bad variable out of the

original basis

Pn = (I - xvxvT)P (A2.9)

The resulting basis will have the form

Pn  =  



0

Pg   (A2.10)

where the top row is a vector of zeros.  This basis will not be orthonormal, however, it is

easy to get the residuals on this new model rn from

rn = [0 | xg] [I - Pn(PnTPn)-1PnT] (A2.11)

where we have now used the appropriate equations for projection onto an non-orthonormal

basis.  Substituting equation (A2.10) into (A2.11) we obtain an expression for the

residuals on the new model:
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rn = [0 | xg[I - Pg(PgTPg)-1PgT]] (A2.12)

Now, in order to show that the residuals on the new model rn are equal to the

corrected sample residuals on the old model rc, we need only show that

[Pg(PgTPg)-1PgT] = [PgPgT + PgPbT(I - PbPbT)-1PbPgT] (A2.13)

By manipulation of both sides of this equation we will show that the two sides are indeed

equal.  Our first step is to notice that all terms of this equation are surrounded by the factors

Pg and PgT.  We can factor these out to obtain:

Pg[(PgTPg)-1]PgT = Pg[I + PbT(I - PbPbT)-1Pb]PgT (A2.14)

Clearly if this holds, then

(PgTPg)-1 = I + PbT(I - PbPbT)-1Pb (A2.15)

which can be rearranged to yield

(PgTPg)-1 - PbT(I - PbPbT)-1Pb = I (A2.16)

Because our original set of vectors P were orthonormal, then their inner product

should equal I.  This leads to

PgTPg = I - PbTPb (A2.17)

which may be substituted into equation (A2.16) to obtain

(I - PbTPb)-1 - PbT(I - PbPbT)-1Pb = I (A2.18)
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We now multiply both sides by (I - PbTPb) and obtain after some cancellation

(I - PbTPb)PbT(I - PbPbT)-1Pb = PbTPb (A2.19)

Multiplying through and rearranging yields:

PbT(I - PbPbT)-1Pb - PbTPbPbT(I - PbPbT)-1Pb - PbTPb = 0 (A2.20)

Factoring out the PbT and Pb around each of the terms leads to:

PbT[(I - PbPbT)-1 - PbPbT(I - PbPbT)-1 - I]Pb = 0 (A2.21)

 which implies that

(I - PbPbT)-1 - PbPbT(I - PbPbT)-1 = I (A2.22)

Finally, by multiplying each term on the right by (I - PbPbT) we obtain

(I - PbPbT) = (I - PbPbT) (A2.23)

which is what we wanted to show.



Appendix        3:        Comparison        of       t-        and        T    2    -        Statistics   

The sensitivity of the t- and T2-test for detecting bias errors was investigated by

performing several simulations.  The model given in section 3.2.1 was used as the test

system.  A calibration sequence of 1000 samples was generated and a PCA model of the

process identified (no PLS models were considered in this test).  The t- and T2-statistics

were then developed from the calibration data based on a 20 sample window.  The T2 limits

were established based on a 99% confidence interval.  In order to put the t-test on equal

footing and improve the comparison, the t-test was based on a 99.9% confidence interval.

This was done in order to assure that the total number of false alarms was the same for both

methods.  Because the t-test is done on each variable, and there are 10 variables in the

system tested, a 99% limit would result in a total false alarm rate of about 10%.  By basing

the limits on 99.9%, the total number of false alarms should be equal for both the t- and T2-

tests.

Simulations were conducted to determine the number of false alarms as a check of the

calculated limits.  In a 1000-trial test, the T2-test signaled a significant change 6 times.  It

was found that at least one of the t-test limits was also violated 6 times in this test.  Thus, it

was verified that the total number of false alarms was about equal for both methods.  

A simulation was then performed where biases of magnitude 0.5, 1.0 and 1.5 (in

scaled variable units) were added to each output variable in turn.  1000 sample segments of

20 samples each were generated and each of the ten variables was tested, giving 10,000

total tests.  The number of detections by each method is shown in Figure A3.1.  These

results are also presented in Table A3.1.  Two separate columns are given for the t-test in

the figure.  The rearmost column is the total number of times that at least one of the t limits

was violated, indicating an added bias.  The middle column is the number of times that the

t-test not only detected a bias but correctly identified the biased variable.  The foremost
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column is the number of detections from the T2 test.  The number of total and correct

responses of the t-test was greater than the number of T2 responses at all bias levels

tested.  
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Figure A3.1.  Responses of t- and T2-Tests to Biases on Specific Sensors.

Table A3.1.  Response of t- and T2-Tests to Sensor or Random Biases.

                          t-test                                         T    2   -test                 
Sensor Bias Magnitude right wrong none right none
0.5 1802 264 7937 979 9021
1.0 8298 201 1501 5331 4669
1.5 9779 107 114 9259 741

Random Bias Magnitude right none right none
0.5 115 885 116 884
1.0 562 438 517 483

An additional simulation was done to check the sensitivity of the methods to random
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bias vectors.  In these tests a randomly generated vector of magnitude 0.5 or 1.0 was

generated and added to the simulated process output.  The t- and T2-tests were then

used to detect the bias.  This was repeated 1000 times.  The results are given in Table

A3.1.  Here there is no "correct" response for the t-test since the bias is not applied to a

specific variable.  Therefore, if any of the residuals go out of their calculated limits it is

listed as a correct response.  Under these conditions, the response of the two methods is

much more similar.  When compared to the specific sensor bias tests, it can be seen that the

t-test performance has degraded (in terms of percentage responses to a bias of the same

magnitude) while the T2-test performance is approximately the same.  This would be

expected because the T2-test does not look for biases in any particular direction.  The t-test,

on the other hand, was designed based on individual residuals, which are most sensitive to

individual sensor biases.

In practice, the T2-test, (as implemented here) would also suffer from restrictions on

the size of the window required for the test.  Because the covariance of the independent

residuals S, defined in equation (2.26), must be inverted in equation (2.23), there must be

at least as many samples as independent residuals.  In our example, this means that the

window width must be at least 5 samples for the T2-test, while for the t-test the minimum is

technically 1, though from a practical standpoint several samples would always be used in

order to increase sensitivity.

As the size of the system increases, and particularly, as the ratio of the number of

variables to the number of principal components retained in the model increases, the

disparity between the performance of the T2- and t-tests would be expected to increase.

For example, given a system with 100 variables that is well described by a 2 PC model

(such as the output of a two component system being analyzed by a 100 channel

spectrometer), the T2-test would require a window of at least 98 samples and would have

to take into account the normal deviations over all the variables.  The t-test, however,
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would require a window of only a few samples.  Furthermore, under these

circumstances, the residuals would be a very good estimate of the measurement noise

on each of the particular variables.  Any changes in the underlying sensor behavior, then,

would have a very specific affect on the particular sensor and the method would become

very sensitive to individual sensor faults.
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